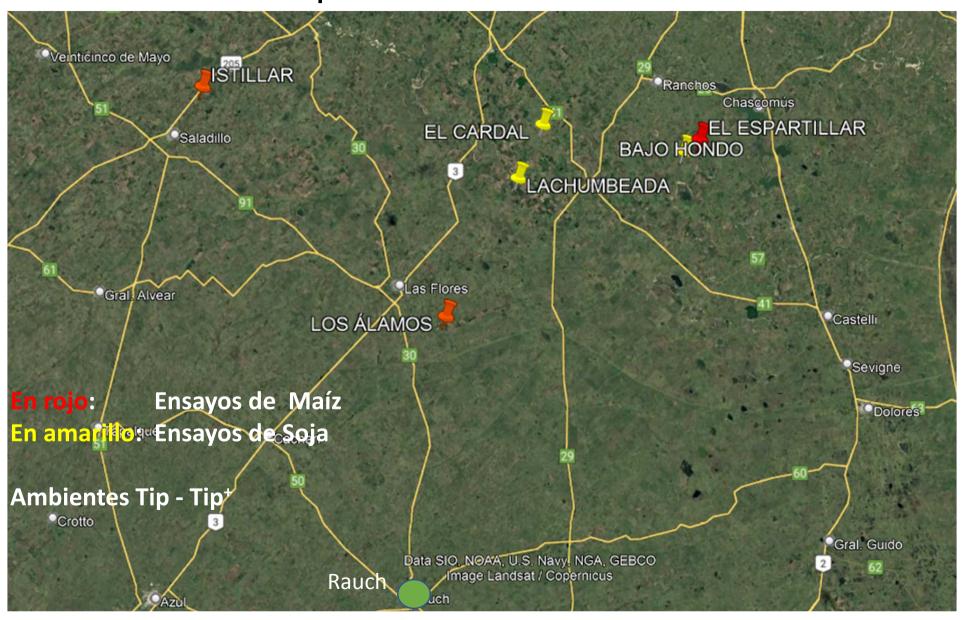


Región CREA Sudeste Núcleo Norte

Ensayos en cultivos de MAÍZ y SOJA


- Campaña 2024-25-

Jornada de Análisis de Campaña - Región CREA Sudeste Rauch, Pcia. de Buenos Aires, 12 de Agosto de 2025

Ubicación de los ensayos SE-NN Campaña 2024-2025

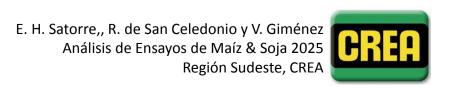
Maíz temprano

Año	Sitio	Localidad	Fecha Sbra	Fert. N usado	Nalc (kg/ha)
2024-2025	LA CHUMBEADA	GRAL. BELGRANO	27/9/2024	SOLMIX 28	153
2024-2023	LA CHOIVIBLADA	GRAL BELGRANO	21/3/2024	SOLIVIIA 28	184
2024-2025	EL CARDAL	S MIGUEL DEL MONTE	1/10/2024	UREA	206
2024-2023	EL CARDAL	3 WIIGOEL DEL WONTE	1/10/2024	URLA	279
2024-2025	BAJO HONDO	CHASCOMUS	3/10/2024	SOLMIX 28	172
2024-2025		CHASCOMOS	3/ 10/ 2024	JOLIVIIA 28	212

Soja de 1ra

AÑO	SITIO	LOCALIDAD	Fecha SBRA	DEH (cm)	SUELO	ANTECESOR
2024-2025	LOS ALAMOS	LAS FLORES	8/11/2024	35 (CHORRILLO)	TIP	Maíz
2024-2025	ISTILLAR	SALADILLO	15/11/2024	26 (CHORRILLO)	TIP+	Trigo/Sj 2da
2024-2025	EL ESPARTILLAR	CHASCOMUS	19/11/2024	35 (PLACA)	TIP-	Maíz

(*) en **El Espartillar** hubo dos tratamientos: con y sin azufre (53 kg/ha de Sulfato de calcio)

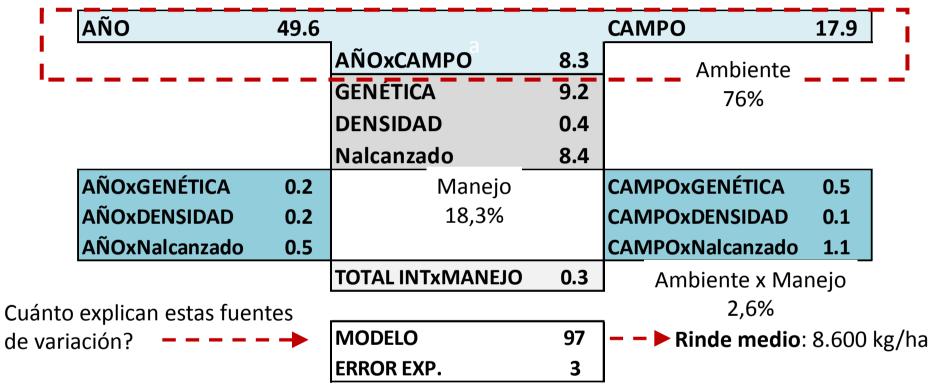


Región CREA Sudeste Núcleo Norte

Ensayos de MAÍZ Temprano Campaña 2024-25

Evaluación comparativa de híbridos en planteos de Maíz Temprano bajo dos condiciones de fertilización con nitrógeno.

Jornada de Análisis de Campaña - Región CREA Sudeste Rauch, Pcia. de Buenos Aires, 12 de Agosto de 2025



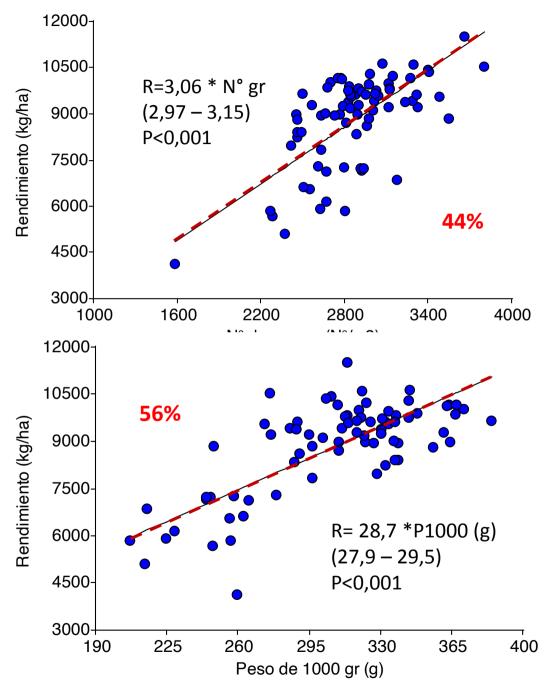
1- Determinantes agronómicas del rendimiento de Maíz Temprano en la región SE-NN

Porcentaje (%) de la varianza total del rendimiento de maíz temprano en 6 años de ensayos entre 2019-2024, explicada por diferentes componentes de ambiente y manejo.

Son importantes las diferencias de rendimiento entre años y sitios en la región (76%). En los últimos años aparecen señales del clima y la condición inicial ligados tanto a la variabilidad, como al techo de rendimiento alcanzable. En nuestras decisiones de manejo determinamos ± 20 % (Ej. sobre 10 tn/ha –entre 12 y 8 tn/ha

Ambiente impredecible: AÑO Ambiente conocido: CAMPO

Manejo: Genética; densidad; Nalcanzado


2- Determinantes ecofisiológicas del rendimiento de maíz en la región SE-NN

Análisis de Ensayos de Maíz & Soja 2025

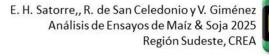
Región Sudeste, CREA

- -El N° de granos/m2 explica la mayor parte de la variabilidad de los rendimientos en la región; sólo en algunos casos (campaña 2022-23 y 24/25) el **peso de los** granos explicó buena parte de esa variabilidad.
- -En la región **es esperable una correlación negativa entre número de granos y peso de 1000 granos**. Las condiciones de fin de ciclo son determinantes del peso de 1000 granos, ya que afectan la capacidad energética de la planta durante el llenado.
- -En la región, desde el núcleo Norte al Sur, la reducción de la capacidad energética de la planta en el cultivo hacia fin de verano es un evento frecuente, por la condición foto-térmica que experimenta a medida que se retrasa la fecha de siembra o se alarga el ciclo del híbrido. En algunos casos, en planteos tardíos este último efecto se atenúa con la menor demanda, la reducción de la densidad y el aumento de la EUR.
- -La variabilidad del rendimiento **no aparece ligado** a componentes determinantes del número de espigas (**prolificidad, esterilidad, etc**), aunque con alguna excepción observada en algún sitio y año (Ej. El Espartillar en Chascomus) durante la campaña 2022/23).

Relación entre componentes y el rendimiento de Maíz durante la campaña 2024-25

- El número en rojo representa el porcentaje de la varianza total explicado por cada componente.
- El peso de 1000 granos (g)
 explicó un porcentaje elevado
 e inusual del rendimiento de
 varios genotipos en tres sitios
 durante la campaña 24-25.

3- Genética y el 10 % de la varianza del rendimiento de Maíz en la región SE-NN.



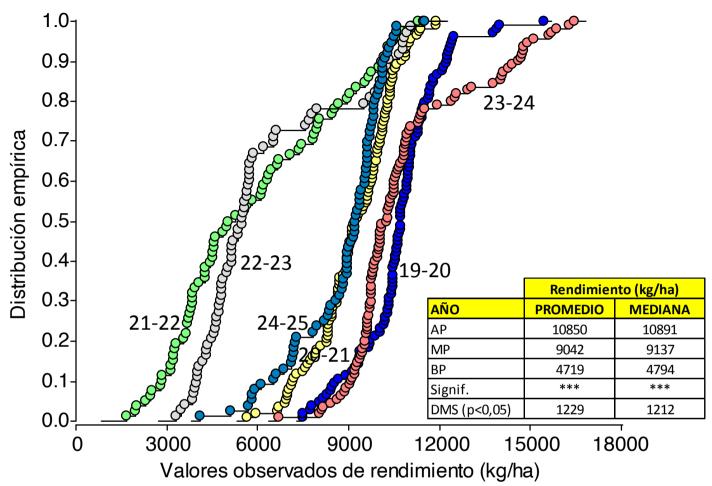
- Resulta crucial destinar y manejar cada híbrido según el tipo de lote y ambiente que va a experimentar.
- Es relevante mirar la **estabilidad** y no sólo el **potencial de rendimiento** del híbrido para cada situación. Ver adelante lo que nos sugieren los resultados de la región.
- La estabilidad de cualquier híbrido se obtiene eligiendo/manejando la condición del lote, la densidad y/o la nutrición.

Testigo ((NK	842	VIP	ΓERA	3)

1000180 (1111 0 12 111					
САМРО	NITRÓGENO	n	Rinde (kg/ha)	D. E.	CV (%)
BAJO HONDO	172	3	9889	225	2%
	212	3	9813	345	4%
Total BAJO HONDO		6	9851	264	3%
EL CARDAL	206	2	10005	186	2%
	279	2	9295	92	1%
Total EL CARDAL		4	9650	427	4%
LA CHUMBEADA	153	3	6651	842	13% N
	184	3	8500	589	7%
Total LA CHUMBEAL	DA	6	7575	1203	16%

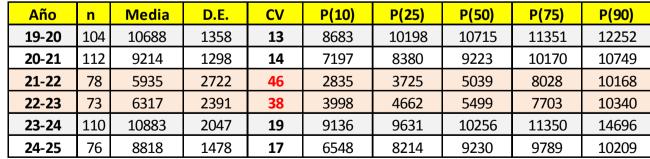
Rendimiento, desvío estándar y coeficiente de variación (%) del promedio del testigo (NK 842 Vip3) en cada sitio de ensayo durante 2024-25.

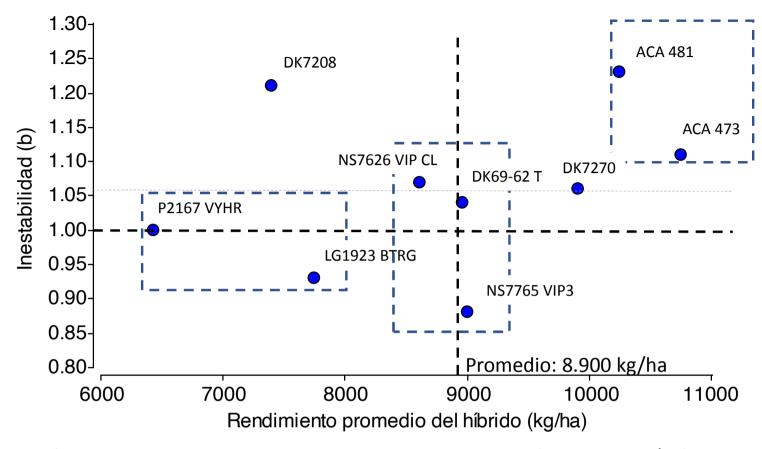
Comportamiento de los híbridos de maíz ensayados durante 2024-25.



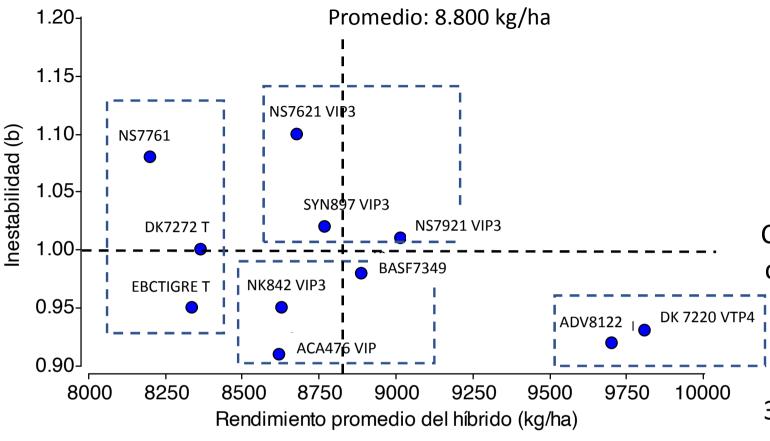
Promedio de los 3 sitios y 2 condiciones de N

	1 Tolliedio de 103 5 31tios y 2 condiciones de 10								
	Híbridos	Rendimiento	NG	P1000 (g)	Esterilidad	Prolificidad			
		(kg/ha)	(granos/m2	P1000 (g)	(%)	(esp/pl)			
	ACA 471 VT3P	9530	3275	290	2%	1.08			
	BASF 7349 VT3P	9166	2802	326	2%	1.04			
	NK 842 VIPTERA 3	9025	2869	314	2 %	1.06			
•	NS 7765 VIPTERA 3	8999	2623	342	6%	1.04			
	EXPERIMENTAL GENTOS 1212	8978	3189	283	1%	1.04			
	DK 69-62 TRECEPTA	8711	2691	323	2%	1.02			
	NS 7626 VIPTERA 3 CL	8618	2775	311	2%	1.04			
	ADV 8620 VT3P	8569	3009	284	3%	1.07			
	DK 72-72 TRECEPTA	8519	2678	318	1%	1.10			
	BREVANT 8421 PWUEN	8451	2783	302	1%	1.01			
	EBC TIGRE 21-123 TRE	<u>81</u> 7 <u>5</u>	<u> 2634</u>	307	<u>2%</u>	1.08			
	Total general	8795	2852	309	2%	1.05			
	Valor p	<0,05	< 0,001	<0,001	< 0,01	< 0,1			
	DMS (p< 0,05)	735	279	23	2%	0.06			


Densidades elevadas pudieron comprometer la estabilidad de los planteos debido a la condiciones de Enero (PC) y durante el llenado (<EUR).


¿Qué condiciones exploran los híbridos y como influyen en su comportamiento?

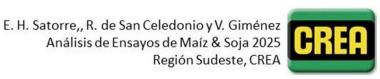
Distribución
empírica de los
rendimientos de
maíz en cada
parcela de ensayo
(ECR) de los
últimos 6 años.



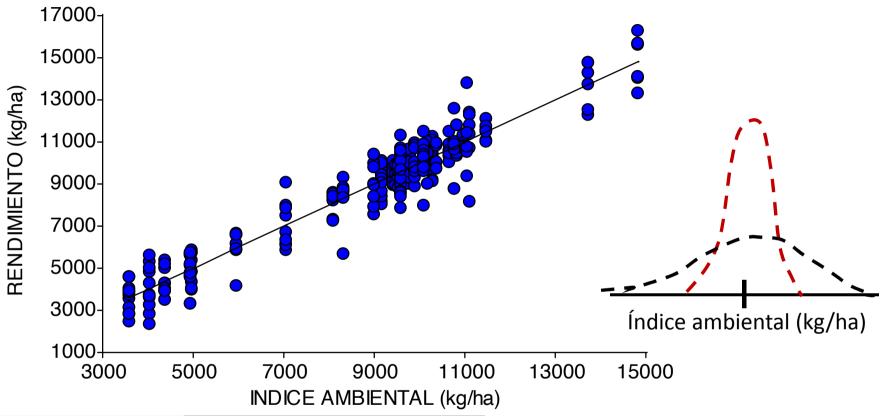
¿Dónde sembrar mis híbridos?

Caracterización de los híbridos en un rango ambiental estrecho. Entre 6.500 – 10.500 kg/ha.

- Híbrido estable y alto rendimiento en ambientes medios (6,5 10,5 Tn/ha): DK7270
- Híbridos estables y rendimiento medio: NS7765 VIP3; menos estables: NS7626 VIP
 CL, DK6962 TRE.
- Híbridos de **menor estabilidad con rendimiento medio alto** (para ambientes de medio-alto rendimiento (10,5 Tn/ha): **ACA481 y ACA 473**.
- Híbrido inestable sólo para los mejores ambientes en el rango explorado: DK7208.
- Híbridos estables pero de bajo rendimiento medio (poco adaptados a la zona): LG1923
 BTRG y P2167 VYHR.
 E. H. Satorre,, R. de San Celedonio y



¿Dónde sembrar mis híbridos?


Caracterización de los híbridos en un rango ambiental amplio. Entre 3.700 – 13.000 kg/ha.

- Híbridos estables con rendimiento medio alto: ADV8122 y DK7220.
- Híbridos estables con rendimiento medio: NK842 Vip3, BASF7349 y ACA476 Vip
- Híbridos de menor rendimiento (menor adaptación) DK7272 T, EBCTigre T; inestable con algo mejor comportamiento en buenos ambientes NS7761 dentro de este grupo.
- Híbridos inestables con rendimiento medio (adaptados a buen manejo y ambientes):
 SYN897 Vip3, NS7921 Vip3, NS7621 Vip3.

Rango de rendimientos en los **híbridos más representados** en los ensayos de la región SE-NN durante 6 campañas.

		Rendimiento (kg/ha)					
Grupo	N° Hibridos	MedIA	MinIA	MaxIA			
Grupo 3	10	8997	6488	10452			
Grupo 1	11	8819	3739	13097			
Signif		ns	<0,001	<0,001			
DMS (p<0,05)		827	1430	1421			

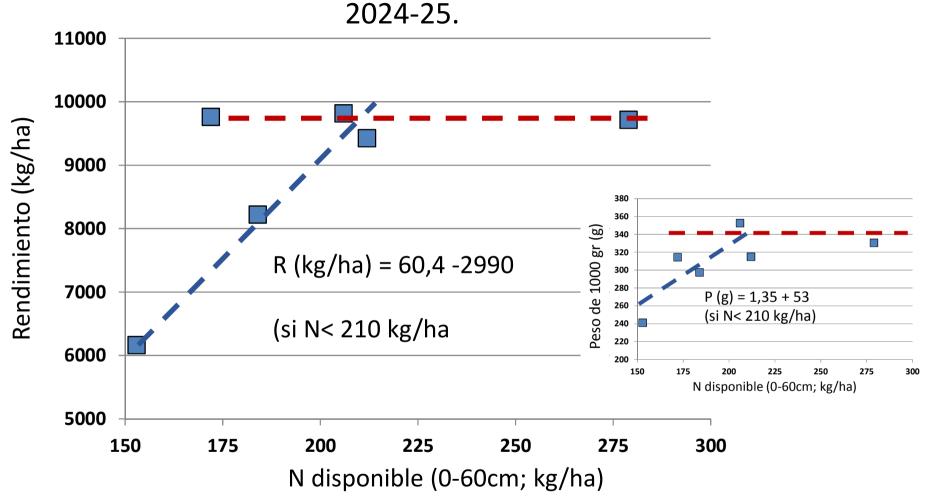
Los grupos identificados tienen el mismo promedio ambiental, pero distinta dispersión.

E. H. Satorre,, R. de San Celedonio y V. Giménez Análisis de Ensayos de Maíz & Soja 2025 Región Sudeste, CREA

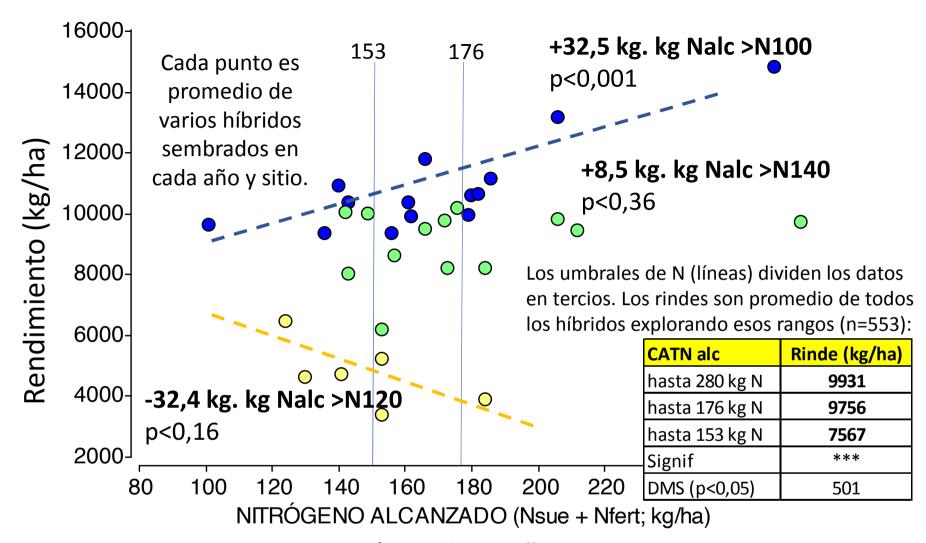
4- Fertilización y el 10 % de la varianza del rendimiento de Maíz en la región SE-NN.

- Los cultivos de maíz de la región tienen respuestas elevadas a la fertilización con nitrógeno, aún por encima de 140 kgN_{alcanzado} en el suelo (en el rango N140-N170).
- En condiciones favorables, de alto rendimiento (Año x Ambiente), sin embargo, la respuesta a N decrece por encima de N170: En el promedio de los campos y años es esperable que la respuesta por encima de N170 se reduzca y pueda alcanzar valores negativos.
- En un análisis general, es esperable que los híbridos de **alto y medio rendimiento** tengan **mayores respuestas a N** que los de menor rendimiento (de cola).

САМРО	NITRÓGENO	n	Densidad (pl/m2)	Rendimiento (kg/ha)	NG (granos/m2	P1000 (g)
BAJO HONDO	172	14	6.3	9758	3120	314
	212	14	6.3	9420	3004	315
Total BAJO HONDO		28	6.3	9589 I	3062	315
EL CARDAL	206	11	6.4	9812	2794	352
	279	11	6.4	9711	2954	330
Total EL CARDAL		22	6.4	9761	2874	341
LA CHUMBEADA	153	13	7.0	6158	2569	241
	184	13	7.0	8218	2791	297
Total LA CHUMBEAD)A	26	7.0	7188	2680	269


Ambientes y respuestas promedio en la campaña **2024-25.**

Los resultados son promedio de varios híbridos en cada sitio.


Relación N_{disponible} (kg/ha) al inicio de la campaña y el rendimiento medio de maíz en cada sitio de ensayo durante

- La Eficiencia de Uso de Nitrógeno (EUN) habría resultado muy elevado en la campaña, aún por encima de 150N.
- El valor estimado de EUN fue cercano a 17 kg $N_{\rm disponible}$ por tonelada, fuertemente determinado por el sitio de menor rendimiento (La Chumbeada).

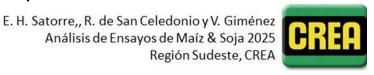
La respuesta a N es mayor en los mejores años.

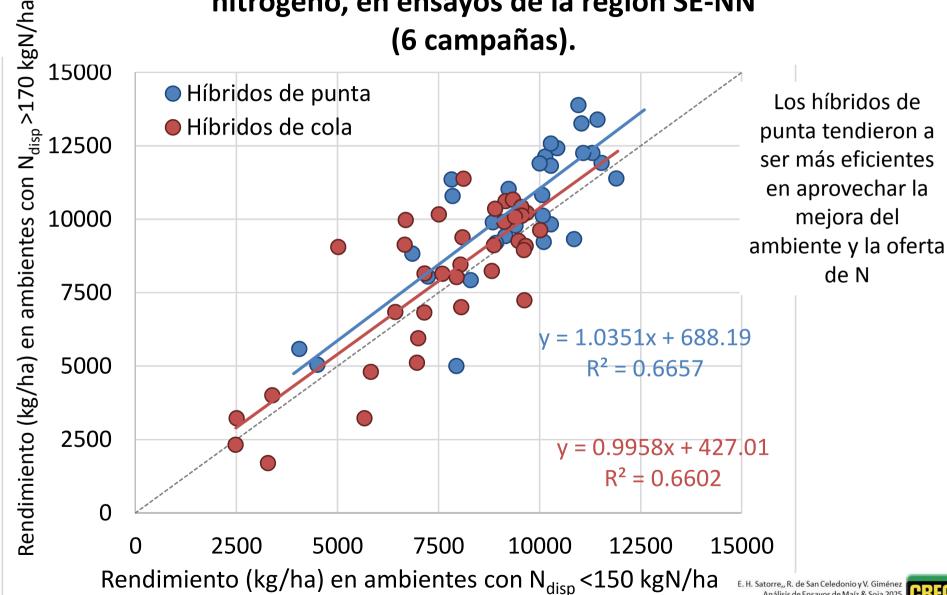
Rendimiento de maíz temprano en relación al nitrógeno alcanzado en suelo cerca de la siembra en **años de diferente productividad**.

Amarillo (baja productividad, **BP**); verde (productividad media, **MP**) y azul (alta productividad, **AP**).

Rendimiento medio de los híbridos de punta, medio y cola de cada ensayo y campaña a lo largo de 6 años bajo 3 condiciones de oferta de nitrógeno.

Potencial Rendimiento	N	N alc (kg/ha)	Rendimiento (kg/ha)	Nro de Granos (N°/m²)	Peso Granos (g/1000 granos)		
Hibridos de punta	Alto N	205	11723	3513	334		
	Medio	168	10977	3554	311		
	Bajo N	140	10028	3203	313		
Híbridos del medio	Alto N	205	10768	3205	337		
	Medio	168	9886	3234	308		
	Bajo N	140	9269	3030	306		
Híbridos de cola	Alto N	205	9761	3009	326		
	Medio	168	8874	2928	306		
	Bajo N	140	8268	2737	302		
Potencial Rto (valor p)		ns	< 0,0001	< 0,0001	<0,1369		
N (valor p)		<0,0001	< 0,0001	< 0,0001	<0,0001		
Potencial Rto x N (valor p		ns	ns	ns	ns		
DMS valores ind. (p<0,05)		4	630	183	14		
N° de casos (HxAxS)				41-52			


- En el promedio de 6 años de ensayo la interacción tipo de híbrido (de alto o bajo rendimiento en la región Potencial-) no resultó significativa (p>0,10); Sin embargo, los híbridos de punta tienden a mayores respuestas entre N140 y N170 kg N disponible/ha.
- NxGenética = 1,1 % varianza total.


Respuestas promedio de los híbridos de punta, medio y cola de cada ensayo y campaña a lo largo de 6 años al incremento de nitrógeno en distintos rangos de oferta.

		Rendimiento (kg/ha)						
Potencial de rendimiento	N170-N140	N200-N170	Respuesta (%)	Respuesta (%)				
!	[R1]	[R2)	[R1]	[R2]				
Híbridos de punta	949	746	9%	7%				
Híbridos del medio	617	882	7 %	9%				
Híbridos de cola	606 887		7%	10%				
			J					

- La **mayor respuesta** se observa en **híbridos de punta** en el rango 140 170 en el promedio de todos los años.
- La mayor oferta de N, en el rango superior (170-190) aparece permitiendo una respuesta elevada de los híbridos de comportamiento medio o de cola, posiblemente aumentando su estabilidad (serían más sensibles a la oferta de N)
- La respuesta a Genética y Nitrógeno no es linear e igual para todos los híbridos.
- El N influencia tanto el N° de granos fijados como su peso de 1000.

Relación entre el rendimiento promedio de híbridos de punta y de cola de maíz temprano en una baja y una alta oferta de nitrógeno, en ensayos de la región SE-NN (6 campañas).

INCIDENCIA DE ROYA EN MAÍZ. DETERMINACIONES EN DOS ESTADOS FENOLÓGICOS POR CAMPO.

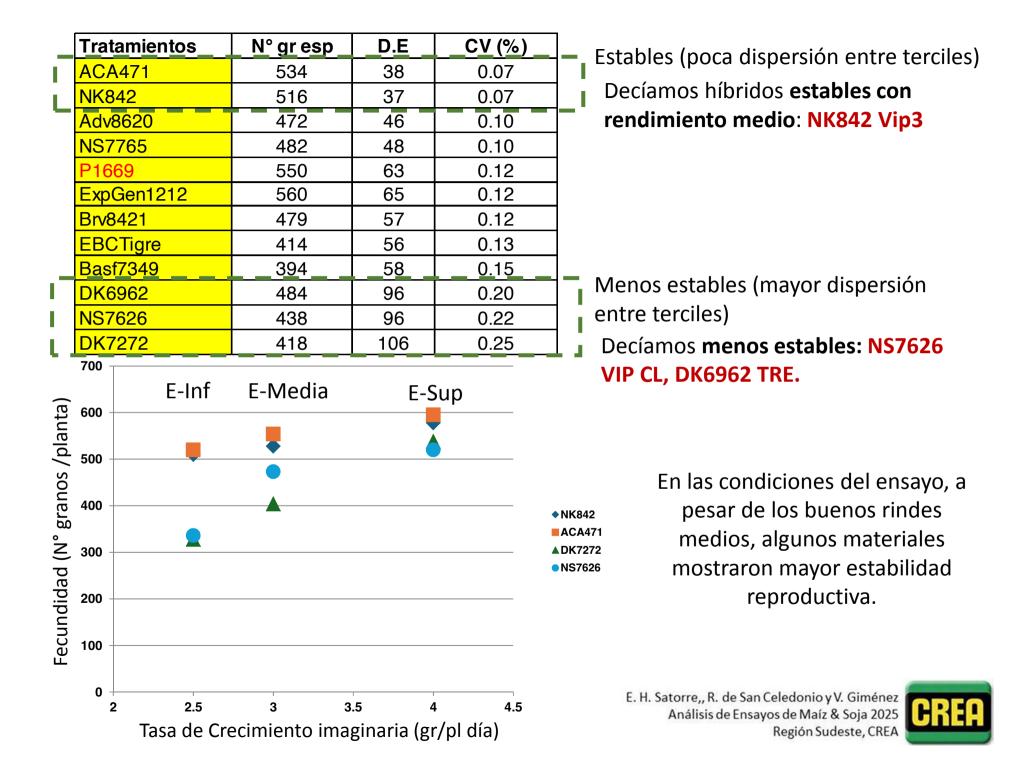
Campaña 2024/25

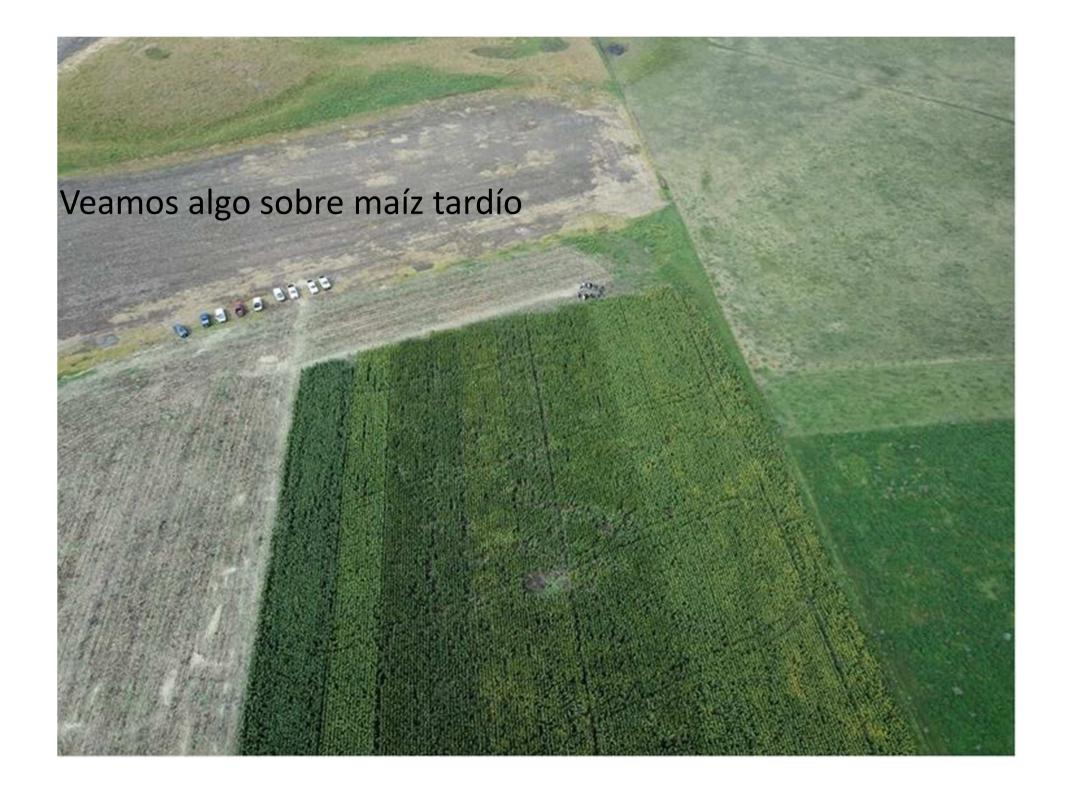
	Incidenci	a de Roya
CAMPO	V12-V14	R1-R2
EBC TIGRE 21-123 TRE	0.29	0.74
BASF 7349 VT3P	0.26	0.87
ACA 471 VT3P	0.25	0.97
NS 7626 VIPTERA 3 CL	0.24	0.73
BREVANT 8421 PWUEN	0.22	0.83
DK 72-72 TRECEPTA	0.22	0.87
DK 69-62 TRECEPTA	0.22	0.77
ADV 8620 VT3P	0.19	0.46
NK 842 VIPTERA 3	0.17	0.65
EXPERIMENTAL GENTOS 1212	0.17	0.79
NS 7765 VIPTERA 3	0.15	0.69
PIONNER P1669 VYHR LEPTRA	0.02 (*)	0 (*)
Significancia	p<0.05	p<0.0001
DMS (p<0,05)	0.10	0.17

	Incidencia de Roya				
CAMPO	V12-V14	R1-R2			
EL CARDAL	0.38	0.95			
BAJO HONDO	0.13	0.59			
LA CHUMBEADA	0.13	0.69			
Significancia	p<0,0001	p<0,0001			
DMS (p<0,05)	0.04	0.08			

- La severidad de Roya en R1 fue baja, con excepción de la observada en: NK842; ADV8620; DK7272 y ACA 471 en El Cardal dónde registraron valores medios.
- En La Chumbeada BASF7349
 alcanzó también valores medios de severidad.

^(*) se evaluó sólo en Bajo Hondo




Resultados de las determinaciones en el Ensayo de Maíz temprano de **El Espartillar**. **Campaña 2024 - 25**

Tratamientos	N° esp	pl/m2	N° E-Sup	N°E-Med	N° E-Inf	N°g-sup	N°g-Med	N°g-Inf	N°g/m2
P1669	6	5.76	2	2	2	621	596	501	3299
ACA471	7	6.72	2	3	2	595	554	520	3736
DK6962	8	7.68	3	2	3	586	536	400	3869
Brv8421	7	6.72	1	3	3	580	468	504	3356
ExpGen1212	9	8.64	4	3	3	580	528	450	5044
NK842	8	7.68	3	2	3	578	518	510	4128
DK7272	8	7.68	3	3	2	538	404	328	3343
Adv8620	7	6.72	2	3	2	531	500	440	3304
NS7626	8	7.68	3	3	2	520	473	336	3505
NS7765	7	6.72	3	3	1	520	507	432	3372
Basf7349	8	7.68	2	3	3	448	448	348	3153
EBCTigre	6	5.76	2	2	2	444	480	371	2486
PROMEDIO	7.42	7.12	2.5	2.7	2.3	545	501	428	3550
DESVÍO EST.	0.90	0.86	0.8	0.5	0.7	56	51	71	620

Los resultados están ordenados por el N° de granos en las espigas del tercil superior, a fin de destacar la fecundidad reproductiva media de una planta bajo la mejor condición observada en ese híbrido, en el ensayo.

La diferencia con el número de granos de las espigas en el tercil inferior muestra la sensibilidad a las diferencias de ambiente (TC en el período crítico) de las plantas bajo las condiciones más limitantes observadas en el ensayo.

Resultados de maíz tardío en **El Espartillar durante 2 campañas**

	Rendimiento
AÑO	(kg/ha)
2023	9225
2024	9320
Sig	ns
DMS	592

NITRÓGENO	
Nsuelo	8941
N110	9458
N140	9418
Sig	ns
DMS	655

Los resultados son promedios de varios híbridos de maíz en cada año.

Nota: al eliminar el efecto de los híbridos ensayados, la respuesta al agregado de nitrógeno fue significativa (p<0,05) hasta N110 (suelo + fertilizante)

	Rendimiento
NITRÓGENO	(kg/ha)
Nsuelo	8850
N110	9339
N140	9402
Sig	p<0.05
DMS	374

Resultados de maíz tardío en **El Espartillar durante 2 campañas**

	Rendimiento	N° de
NITRÓGENO	(kg/ha)	casos
DK 7208 VT3P	9863	3
BASF 7344 VT3P	9713	6
ACA 470 VT3P	9602	6
NS 7921 VIP3 CL	9356	3
NK 855 VIPTERA3	9258	3
NK 835 VIP3	9253	3
DK 6962 VT3P	9113	3
AX7784 VT3P	8826	6
NK 840 VIP3	8470	3
ADV 8115 VT3P	7954	3
Sig	p<0.001	
DMS	731	

Hubo diferencias significativas entre los híbridos en el promedio de los niveles ensayados de nitrógeno en suelo.

- Se destacaron DK 7208,
 Basf 7344 y ACA470 (2 años).
- El híbrido macollador
 AX7784 tuvo bajo
 rendimiento y se ubicó en
 un grupo de cola.

La interacción Híbrido x N no fue significativa.

	N° de	Rendimiento	Índice de	Densidad
NITRÓGENO	casos	(kg/ha)	prolificidad	(pl/m²)
BASF 7344 VT3P	6	9713	1.26	5.72
ACA 470 VT3P	6	9602	1.20	5.93
AX7784 VT3P	6	8826	1.08	6.08
Sig		p<0,05	p<0,05	ns
DMS		740	0.12	0.37

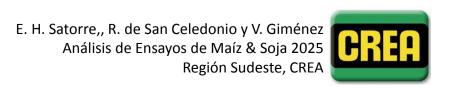
^(*) Los resultados son promedios de 3 niveles de N en cada híbrido de maíz.

	Nivel	Rendimiento	Índice de	Densidad
NITRÓGENO	N	(kg/ha)	prolificidad	(pl/m²)
BASF 7344 VT3P	N140	9911	1.21	5.75
	N110	9865	1.25	5.75
	Nsuelo	9363	1.32	5.65
ACA 470 VT3P	N140	9603	1.24	5.70
	N110	9908	1.21	5.95
	Nsuelo	9295	1.16	6.15
AX7784 VT3P	N140	9052	1.15	6.00
	N110	8788	1.09	6.15
	Nsuelo	8639	1.01	6.10
Sig		p<0,05	p<0,05	ns
DMS		740	0.21	0.64

Resultados de maíz tardío en El Espartillar durante 2 campañas

Los 3 híbridos evaluados muestran patrones de respuesta a Nitrógeno diferentes en la expresión de la prolificidad de las plantas y, en menor medida, a la respuesta a nitrógeno..

ACA470 y AX7784 tienden a aumentar la prolificidad con la oferte de nitrógeno, en tanto que el híbrido Basf7344 tiende a reducirla.



Región CREA Sudeste Núcleo Norte

Ensayos de Soja de 1ra Campaña 2024-25

Evaluación comparativa de variedades y de la respuesta a la fertilización con azufre.

Jornada de Análisis de Campaña - Región CREA Sudeste Rauch, Pcia. de Buenos Aires, 12 de Agosto de 2025

• El ambiente, en SE-NN es el componente más importante, en Soja de 1ra, en la determinación del resultado y su variabilidad. En Soja de 2da... el ambiente es casi siempre limitante y el año es más importante; pero... y el manejo?

	Rendimientos:	(0) 459 - 6790	kg/ha
	Soja de	_	
	N°=3320 lotes e	n 8 campañas	
	Factor	VARIANZA (%)	
	AÑO	47	63 %
L	LOCALIDAD 5 ANTECESOR 11		ambiente
ι.			_•
r ·	GENÉTICA (CICLO)	2	 _ 22 %
	FECHA DE SIEMBRA	18	estructura
L	DENSIDAD	2	
	FÓSFORO APLICADO	8	16 % Fósforo
	FUNGICIDA	8	y protección

El modelo explica el 80,3% de toda la variabilidad de, entre 3220 y 1511 lotes considerados, según factor, con sus efectos simples (sin interacciones).

Fuente:

Datos DAT-CREA zona Sudeste de CREA 2017-2024.

	Rendimientos:	(0) 768 - 5140 l	kg/ha
	Soja de		
	N°=2093 lotes e	n 8 campañas	
	Factor	VARIANZA (%)	
ľ	AÑO	78	07.0/
I	LOCALIDAD	7	87 % ambiente
L	ANTECESOR	ANTECESOR 2	
Ē	GENETICA (CICLO)	= = = = =	- 00/
	FECHA DE SIEMBRA	3	8% estructura
L	DENSIDAD	3	
	FÓSFORO APLICADO	0,3	6,3 %
	FUNGICIDA	6	Fósforo y
	El	172 50/ 1	protección

El modelo explica el 73,5% de toda la variabilidad de, entre 2093 y 1079 lotes considerados, según factor, con sus efectos simples (sin interacciones).

E. H. Satorre,, R. de San Celedonio y V. Giménez Análisis de Ensayos de Maíz & Soja 2025 Región Sudeste, CREA

Using on-farm research to identify highly productive regional soybean crop production systems

Mariana G. Borelli¹, Emilio H. Satorre^{1,2}

¹Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Argentina, ²AACREA, Argentina

C1: Yield and seed composition response to environment

Soybean (Glycine max) crops have been introduced into new producing areas of Argentina since 1990. The flooding Pampa was a traditional beef cattle raising area with little agriculture and agricultural research experience. For this reason, an on-farm research program was established by AACREA regional producers to identify the most productive and stable soybean crop system. We hypothesized that the variety maturity group (MG) in combination with the sowing date was crucial to obtain high and stable yields of the crop under the variety of environments prevailing within the region. On-farm experiments using large plots and conventional machinery and technologies were set and conducted by farmers to assess different soybean cultivars in a wide range of sowing dates and environments (climate and soil type) between 2010 and 2018. Yield and yield components were determined. A continuous learning-through-experience process helped to improve crop performance in the region; meanwhile, a wide database was conformed and used to test the hypothesis. In the analysis, the cultivars used were grouped into three maturity groups: MG-III, MG-IV, and late-maturing MG-IV together with early-maturing MG-V. Sowing dates included experiments grouped in three periods: Early: from 1st October to 5th November; Medium: from 6th November to 25th November; and Late: from the 25th November onwards. Data was analysed using RStudio and InfoStat software. Grain yield was highly dependent on crop grain number determination, but grain filling conditions significantly explained differences in the yields of the various experiments established by farmers. Maturity group IV sowed at early and medium sowing dates was the most productive and stable crop system. Data collected by farmers on their own farms proved to be useful to help them improve their soybean crop systems using local information. Confidence in large-scale plot results allowed a quick and effective technology transfer with significant regional impact.

Fuente:

Abstracts of the World Soybean Research Conference, Viena -Junio 2023; page 304

Efecto de la Fecha de siembra.

	Yield		
SD	(kg/ha)	S.E.	
Early	3989	70	a
Medium	3894	69	a
Late	3325	75	b

Efecto del grupo de madurez.

	Yield		
MG	(kg/ha)	S.E.	
IV M	3820	54	а
IV L / V S	3768	95	ab
III L	3669	55	b

Un muy marcado efecto de sitio (localidad x antecesor)

Rendimiento de soja y sus componentes en 4 ambientes de ensayo durante la campaña 2024-25

Los valores son promedio de 5 variedades en cada sitio/manejo.

Variedad	Rendimiento (kg/ha)	NG (granos/m2)	P1000 (g)
2024-25_EL ESPARTILLAR_CON	4683	2243	208,8
2024-25_EL ESPARTILLAR_SIN	4678	2309	202,9
2024-25_LOS ALAMOS_SIN	3731	1811	195,4
2024-25_ISTILLAR_SIN	3215	1581	205,1
Significancia	<0,0001	<0,001	<0,06
DMS (p<0,05)	207	189	9,8

SITIO	LOCALIDAD	Fecha SBRA	DEH (cm)	SUELO	ANTECESOR
LOS ALAMOS	LAS FLORES	8/11/2024	35 (CHORRILLO)	TIP	Maíz
ISTILLAR	SALADILLO	15/11/2024	26 (CHORRILLO)	TIP+	Trigo/Sj 2da
EL ESPARTILLAR	CHASCOMUS	19/11/2024	35 (PLACA)	TIP-	Maíz

Un marcado efecto de variedad

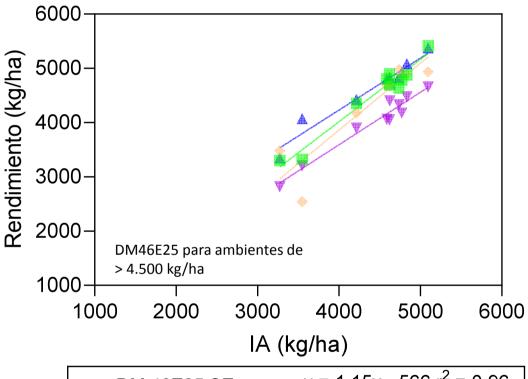
Rendimiento y sus componentes de variedades de Soja durante los ensayos de la campaña 2024-25

Los valores son promedio de 4 sitios/ambientes.

Variedad	Rendimiento (kg/ha)	NG (granos/m2)	P1000 (g)
NS 4634 E STS (*)	4327,09	2085	188,8
DM 46I20 IPRO STS	4295,16	2072	206,8
DM 40E25 SE	4116,43	2029	202,4
DM 46E25 SE	4012,43	2143	187,9
NS 4323 E	3633,13	1601	229,3
Significancia	<0,0001	<0,001	<0,0001
DMS (p<0,05)	260	233	12,0

^(*) se eliminó el dato de una parcela/sitio.

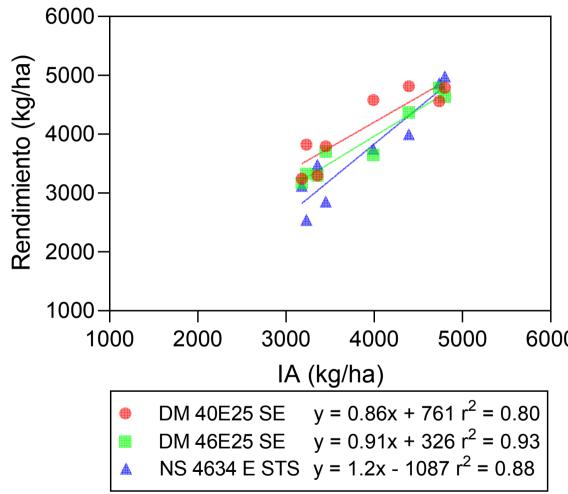
		25 de Enero	8 de Febrero
DM 4323 E	Saladillo	R3	R5.5
	Chascomus	R2-R3	R5.5
	Las Flores	R3	s/d


Evaluación de la fenología de 2 variedades; NS4634 fue la variedad con avance fenológico mas lento hasta R6

	Saladillo	R2	R5
DM 46i20	Chascomus	R2-R3	R5
	Las Flores	R2-R3	s/d

Resultados del análisis GxA en la campaña 2024-25 Regiones SUDESTE y NBA de CREA

Entre estas variedades, cuál elijo y/o cómo la manejo?


- DM 46E25 SE $y = 1.15x 566 r^2 = 0.96$ NS 4323 E $y = 0.97x 279 r^2 = 0.96$ NS 4634 E STS $y = 1.2x 1073 r^2 = 0.83$ DM 46I20 IPRO STS $y = 0.96x + 401 r^2 = 0.95$
- Se analizaron todos los datos provenientes de la campaña 2024-25 de la región SDE y NBA; Solo se tuvieron en cuenta las variedades que se repitieron en todos los ambientes (matriz completa)

- En la campaña variedad NS 4323
 aparece como una variedad estable (b=0.97), pero la de menor rendimiento en todos los ambientes en el rango 3500-5500 kg/ha.
- La variedad **DM 46i20** aparece, por su parte, como estable (b=0,96) y de mayor rinde en todos esos ambientes.
- **DM 4634** tuvo el comportamiento más variable (b=1.2) y menos predecible (r²= 0.83). DM 46E25 fue muy semejante.

Resultados del análisis GxA en la campaña 2024-25 Regiones SUDESTE y OES de CREA

Entre estas variedades, cuál elijo y/o cómo la manejo?

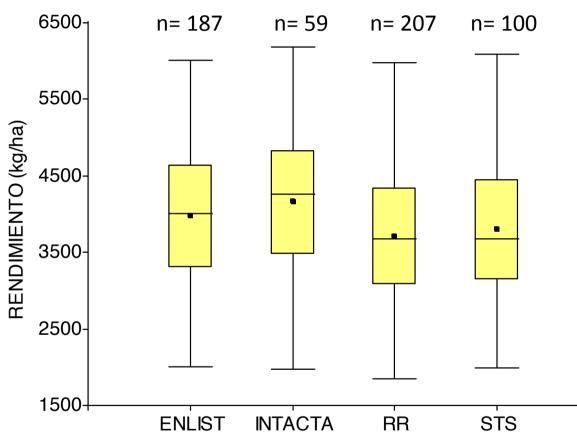
 Se analizaron todos los datos provenientes de la campaña 2024-25 de la región SDE y OES. Sólo se tuvieron en cuenta las variedades que se repitieron en todos los ambientes

- •En esta comparación de variedades todas las variedades se comportan de manera semejante en condiciones de alto rendimiento (5000 kg/ha).
- •La variedad DM 40E25 apareció como la de mayor rendimiento y **estabilidad** (b=0.86) frente a sus pares en la comparación.
- •NS 4634 nuevamente tuvo el 6000 comportamiento más variable (b=1.2), con mayor respuesta a la mejora del ambiente. **DM 46E25** tuvo un comportamiento intermedio.

Resultados del análisis GxA en la campaña 2024-25 Regiones SUDESTE y MyS de CREA

Entre estas variedades, cuál elijo y/o cómo la manejo?

 Se analizaron todos los datos provenientes de la campaña 2024-25 de la región SDE y MyS. Solo se tuvieron en cuenta las variedades que se repitieron en todos los ambientes


- •En esta comparación de variedades sobre un rango ambiental amplio de ambientes, la variedad **DM 40E25 y NS 4634** aparecieron como las de mayor y respuesta a la mejora del ambiente (b>1.1; amb> 3.500 kg/ha).
- •NS 4323 aparece aquí, como la más estable (b=0.7), por su menor rendimiento en buenos ambientes (aproximadamente de 4.500 kg/ha).

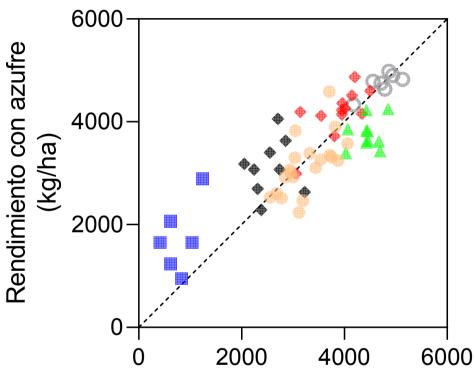
Rendimiento de las variedades según tecnologías

• Se consideraron y analizaron resultados datos provenientes de ensayos en las campañas

2021-22 a la 2024-25, de la región SDE-NN.

Se descartaron todos los casos con rendimientos menores a 1.800 kg/ha; El rango de rendimientos explorado (mínimo y máximo) fue muy semejante entre variedades.

TECNOLOGIA	Rend. (kg/ha)
INTACTA	4165
ENLIST	3978
STS	3809
RR	3710
Significancia	p>0,001
DMS (p<0,05)	234


 Aunque la tecnología intacta mantiene un rendimiento medio superior, este no difiere estadísticamente del obtenido con las variedades Enlist.

Las variedades ensayadas con tecnología RR y STS fueron las de menor rinde.

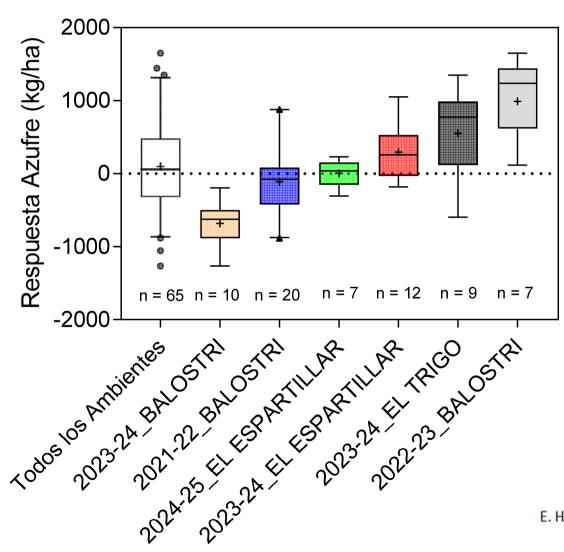
Fertilización con Azufre y el rendimiento de soja de 1ra.

Relación entre el rendimiento de soja en diferentes ambientes, con y sin el agregado de azufre al suelo.

Se analizaron los datos provenientes de **6 ensayos** de fertilización con Azufre en las campañas 2021-22 al 2024-25 .

(*) Puntos sobre la relación 1:1 no presentan respuesta al azufre.

AZUFRE	Rend. (kg/ha)
CON	3412
SIN	3313
Significancia	ns

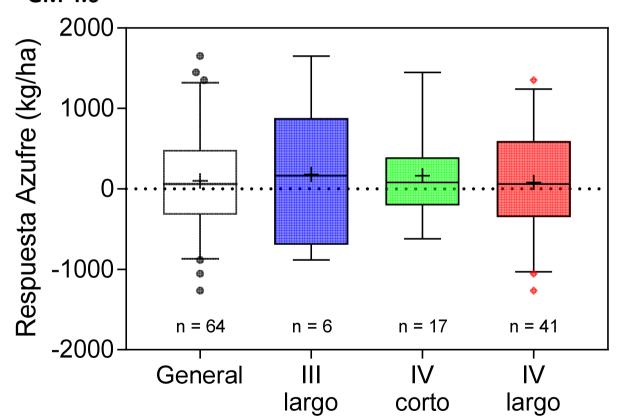

Rendimiento sin azufre (kg/ha)

2021-22_BALOSTRI
 2023-24_EL ESPARTILLAR
 2022-23_BALOSTRI
 2023-24_EL TRIGO
 2023-24_BALOSTRI
 2024-25_EL ESPARTILLAR


Fertilización con Azufre y el rendimiento de soja de 1ra.

Respuesta del rendimiento de soja a la fertilización con azufre en diferentes ambientes (año x sitio) de la región SE-NN.

Se analizaron los datos provenientes de 6 ensayos de fertilización con Azufre en las campañas 2021-22 al 2024-25.


- •A lo largo de estos años de ensayo hubo una fuerte variabilidad en la respuesta asociada al efecto año x sitio.
- •Aún no tenemos modelos que nos permitan identificar con certeza los sitios y condiciones de mayor respuesta al azufre, en la región.

Fertilización con Azufre y el rendimiento de soja de 1ra.

Respuesta del rendimiento de soja a la fertilización con azufre de diferentes grupos de Madurez en la región SE-NN.

 Se analizaron los datos provenientes de los ensayos de Azufre de las campañas 2021-22 al 2024-25; IV largo son GM 4.6

- Nota importante: Los datos son insuficientes para tener un efecto robusto.
- A modo de hipótesis: Los casos representados con grupos de madurez III largo tendieron a tener respuestas mayores.
- A modo de hipótesis: A mayor ciclo la respuesta tiende a ser menor.

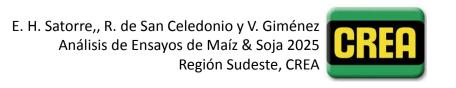
VARIEDAD	DENSIDAD	NºNU	DOS/pl	NºVA	INAS/pl	N°GRANOS/pl				
VANILUAU	(pl/m2)	Media	Desvío Es	Media	Desvío Es.	Media	Desvío St.			
NS4634 ES	34.3	24.9	16.1	41.0	27.5	102.5	68.9			
DM46i20	25.7	24.4	16.2	50.7	29.9	126.7	74.8			
DM46E25 SE	37.1	17.2	10.1	40.0	23.6	100.0	59.1			
DM40E25SE	31.4	18.5	6.7	40.2	13.6	100.5	34.0			
NS4323 E	28.6	14.0	10.8	26.4	17.3	66.0	43.4			
Promedio	31.4	19.8	12.0	39.6	22.4	99.1	56.0			

[1] Observamos en las dos variedades más cortas (DM 40E25 SE y NS 4323 E) la menor plasticidad reproductiva y el menor N° de granos/pl.

N°GRANOS	N°GRANOS	Cociente	Ranking	VARIEDAD
(Estimados/m2)	(Real/m2)	Real / Estim	real	VANILDAD
3514	2540	72%	1	NS4634 ES
3257	2492	77%	2	DM46i20
3714	2590	70%	3	DM46E25 SE
3157	2159	68%	4	DM40E25SE
1886	1932	102%	5	NS4323 E

Los valores reales corresponden a las parcelas evaluadas en el ensayo.

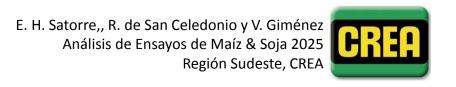
- [2] Observamos que, salvo para el caso de DM 46E25 el ranking de los cultivares estuvo fuertemente correlacionado al N° de granos/m2 (estimado y Observado).
- [3] A pesar de lo pequeña de la muestra, el error en el ranking fue pequeño; el factor de corrección medio fue de **0,79**.



REGIÓN CREA Sudeste Análisis conjunto Núcleo Norte y Sur de

la Cosecha Gruesa en la campaña 2024/25

Jornada de Análisis de Campaña - Región CREA Sudeste Rauch, Pcia. de Buenos Aires, 12 de Agosto de 2025

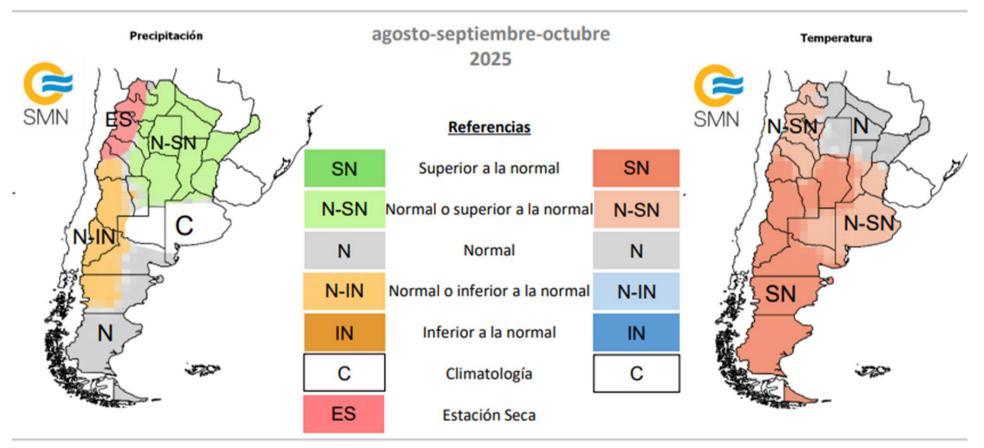


REGIÓN CREA Sudeste Análisis conjunto de Núcleo Norte y Sur

Perspectivas climáticas para la campaña 2025/26

Jornada de Análisis de Campaña - Región CREA Sudeste Rauch, Pcia. de Buenos Aires, 12 de Agosto de 2025

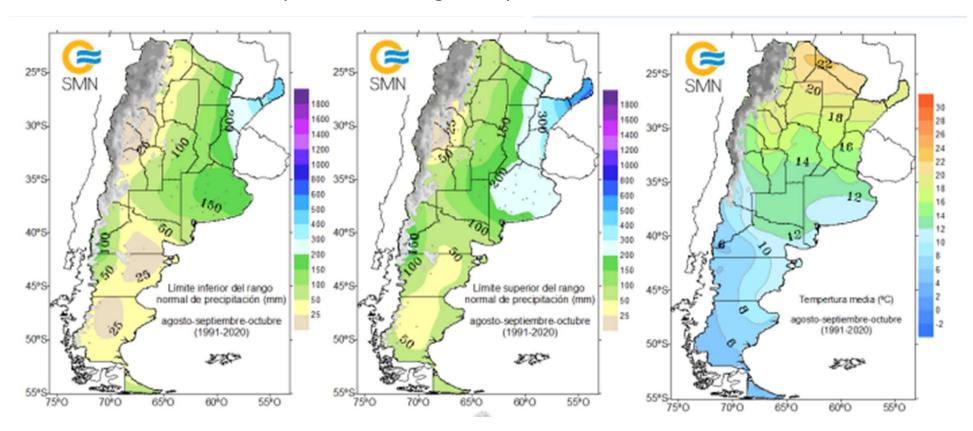
- A principios de Agosto se observa un muy buen contenido de humedad en los suelos.
- Son muy marcados los altos contenidos de humedad en los suelos de algunas localidades hacia el Este y centro de la provincia de Buenos Aires.
- Vastas áreas permanecen anegadas; ej. 9 de Julio) desde el inicio del invierno.


Fuente: SMN https://www.smn.gob.ar/monitoreo_periodos

Vigente al 4 de Agosto de 2025

https://www.smn.gob.ar/pronostico-trimestral

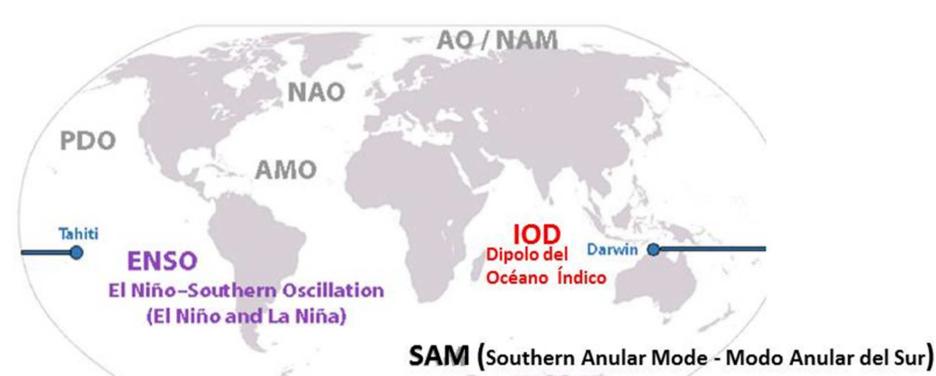
El pronóstico de consenso para el trimestre agosto-septiembre-octubre 2025 indica lo siguiente:



A tener en cuenta: (i) El pronóstico indica las probabilidades previstas para cada categoría (SUPERIOR, NORMAL E INFERIOR), en cada región señalada y para el trimestre pronosticado.; (ii) por ejemplo, si para una región determinada el pronóstico estacional prevé las mayores chances de precipitación en la categoría superior ,es indicativo que puedan haber eventos de lluvia hacia el rango superior del régimen normal de lluvias.

E. H. Satorre, 2025 Región Sudeste, CREA

Vigente al 4 de Agosto de 2025


https://www.smn.gob.ar/pronostico-trimestral

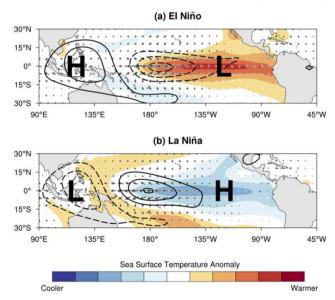
A tener en cuenta:

- (i) Para la precipitación, el mapa de la izquierda muestra el límite inferior del rango normal y el mapa del medio el límite superior del rango normal. Esos umbrales separan las tres categorías.
- (ii) Para la temperatura, se puede considerar que el tercil central implica valores de aproximadamente 0.5°C por debajo o por encima del valor medio. Valores por encima o por debajo de ese rango serían temperaturas inferiores o superiores a la normal.

ANALICEMOS ALGUNAS FUENTES DE VARIABILIDAD CLIMÁTICA A GRAN ESCALA


ENSO y IOD suelen estar relacionados, pero no hay correlación entre estos y SAM)

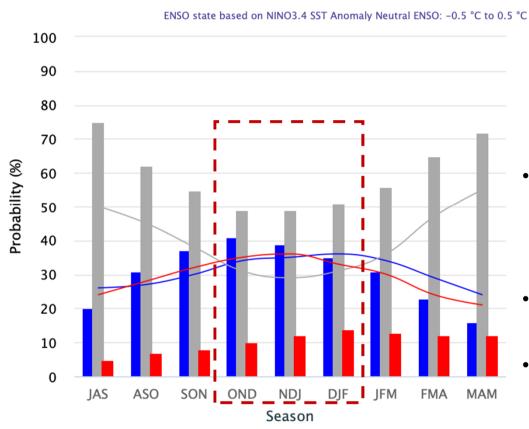
Teleconexiones:


- -ENSO
- -IOD
- -SAM

Acerca de los modos de Variabilidad Climática: [1] ENOS Los vientos circulan de Este a Oeste; Ilevan las aguas cálidas superficiales

El Niño-Oscilación del Sur (ENOS)

Si la circulación de los vientos se frena, el agua cálida desciende (no es normal y la temperatura aumenta en el Pacífico Ecuatorial provocando El Niño; sobre Perú ingresa el aíre húmedo y llueve; Cuando la diferencia de Presión entre Perú (anticiclón) e Indonesia (Ciclón) se fortalece los vientos del Este progresan hacia el oeste y el agua fría asciende sobre la costa de Perú y provoca el fenómeno La Niña y mucha pesca (el agua fría asciende con nutrientes del fondo y proliferan los pescados).


El agua caliente se dilata y por eso es mayor la altura del océano en Indonesia que en Perú (hasta 8-10 cm); la temperatura allí en el pacífico occidental es hasta 10 grados mayor que en la costa Oriental de Perú.

Adaptado de M.E. Fernández Long, 2025.

¿En qué fase ENSO transcurriría en la campaña 2025-26?

Las líneas representan la probabilidad media esperada en cada trimestre.

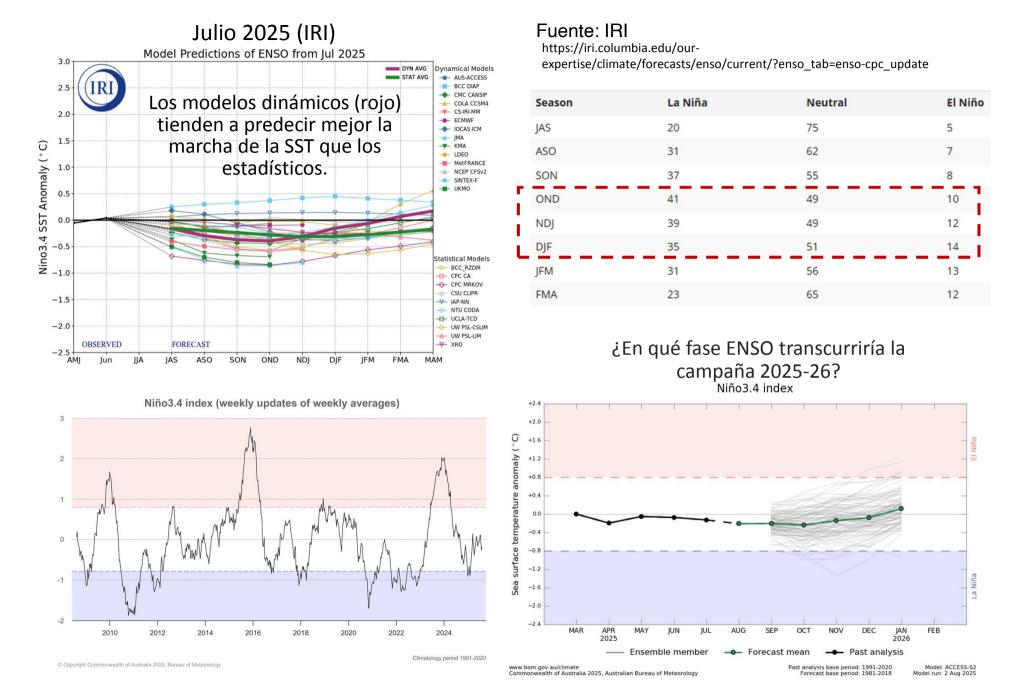
Mid-July 2025 IRI Model-Based Probabilistic ENSO Forecasts

 Se prevé una primavera transcurriendo bajo una señal Neutral, con climatología cercana al histórico y con toda su variabilidad.

- Probabilidad de condición Neutral es cercana al 50%.
- Hay muy baja probabilidad que transcurra la estación bajo una condición El Niño.

La Niña Forecast Probability Neutral Forecast Probability

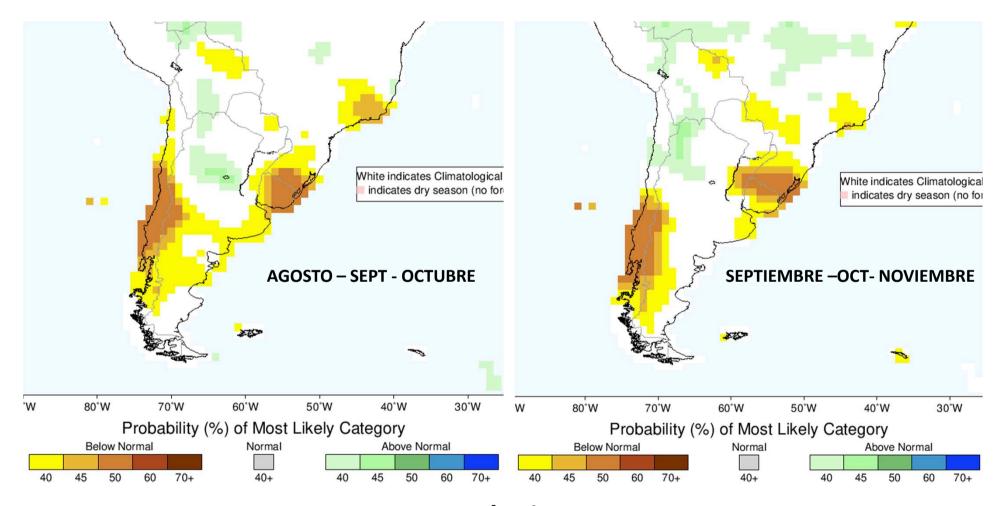
El Niño Forecast Probability


La Niña Climatology

Neutral ClimatologyEl Niño Climatology

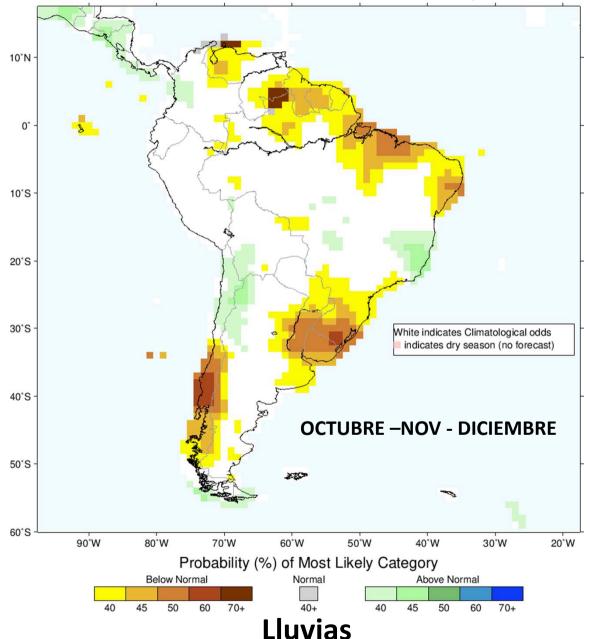
Según modelos a Mediados de Julio 2025

Fuente: IRI



El servicio de Australia prevé condiciones Neutrales hasta fin de Diciembre.

Probabilidad de precipitaciones estacionales (IRI)


IRI Multi-model probability forecast for precipitation

Lluvias
Probabilidad (%)

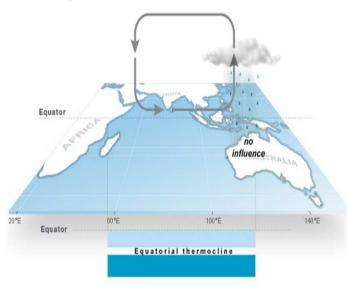
IRI Multi-Model Probability Forecast for Precipitation for October-November-December 2025, Issued July 2025

Probabilidad (%)

Los modelos del **IRI** en Julio fortalecían la señal de lluvias debajo de lo histórico hacia el fin de la primavera en el Litoral y sur de Brasil.

Mantiene una amplia condición Neutral, pero daría la impresión que predice un comportamiento hacia una leve condición **La Niña** débil. Sin embargo, debilita la señal en el trimestre N-D-Enero.

Es necesario seguir la evolución de estos pronósticos en los próximos meses (Agosto-Septiembre) antes de considerar su potencial influencia en el centro y oeste de Buenos Aires.


En relación a la marcha de las temperaturas, predice una primavera más cálida.

Acerca de los modos de Variabilidad Climática: [2] DOI

Dipolo del Océano Indico (IOD)

INDIAN OCEAN DIPOLE

Indian Ocean Dipole (IOD): Neutral phase

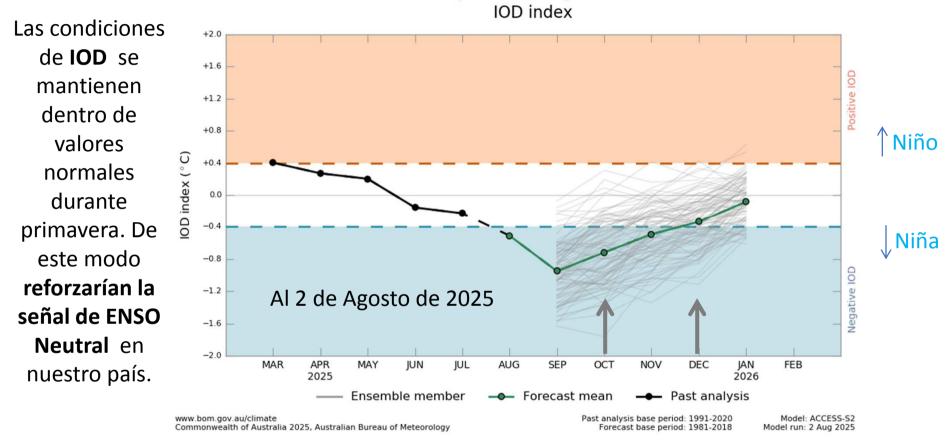
@ Commonwealth of Australia 2013

Lo normal es la circulación E-W, sin diferencia de presión entre Indonesia y África.

Positive phase increased convection cooler Africa than equator increased than Indian ocean 60°E 120°E 180° longitude

Adaptado de M.E. Fernández Long, 2025.

En las fases positivas no llueve en Australia y **Sí en Argentina**; fortalece la señal de El Niño con el que tiene una alta correlación.


NOAA Climate.gov

Estudios realizados para Sudamérica vinculan a esta oscilación con la precipitación en el Sur de Brasil y Noreste. Esta tele-conexión se conoce como válida cuando la fase **positiva** o **negativa** del IOD ocurre durante el otoño-invierno y, se expresa con fuerza en la primavera.

¿En que fase transcurriría el Dipolo del Océano Índico?

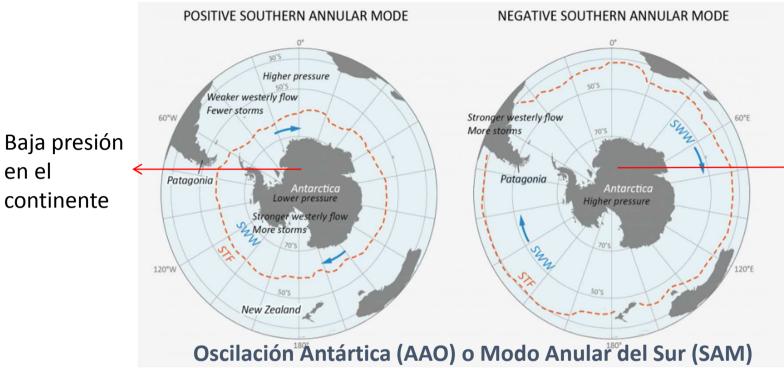
Anomalías de las temperaturas medias mensuales sobre el nivel del mar en el océano índico para la región IOD.

Región Sudeste, CREA

Dipolos positivos, generalmente (pero no siempre) ocurren con años Niño y, por el contrario negativos, con años Niña. En Australia el IOD negativo concentra aguas cálidas en el Este del índico y causa abundantes lluvias en el Sur de Australia. El IOD positivo, por el contrario lleva las aguas cálidas a la costa africana (el Oeste del índico) y causa sequía en el Sur de Australia.

E. H. Satorre, 2025

Anomalías de las temperaturas medias sobre el nivel del mar en el océano índico para la región IOD. Campaña 2025

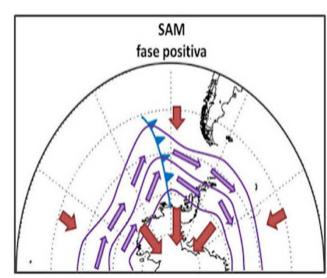

- The Indian Ocean Dipole (IOD) is neutral. The latest value of the IOD index for the week ending 27 July is -0.44 °C, which just exceeds the negative IOD threshold of -0.4 °C. Neutral IOD index values range between -0.4 °C to +0.4 °C.
- The Bureau's model predicts a neutral state of the IOD until at least August, dipping into the negative IOD range for September and October before returning to neutral IOD values again in November. Of the 8 international models assessed, 7 forecast a negative IOD pattern developing at some point between August and November.

www.bom.gov.au/climate Commonwealth of Austral	ia 2025, Australian Bureau of	Past analysis base period Forecast base period	Model: ACCESS-S2 Model run: 2 Aug 2025			
		101	probabilities			
Month	Aug 2025	Sep 2025	Oct 2025	Nov 2025	Dec 2025	Jan 2026
IOD	-0.5 °C	-0.9 °C	-0.7 °C	-0.5 °C	-0.3 °C	-0.1 °C
below −0.4 °C	60.6%	91.9%	70.7%	54.5%	35.4%	10.1%
neutral	39.4%	8.1%	29.3%	44.4%	63.6%	85.9%
above 0.4 °C	0%	0%	0%	1.0%	1.0%	4.0%

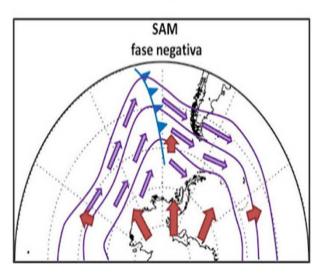
Product code: IDCK000073

Modos de Variabilidad Climática: SAM o AAO

Alta presión en el continente antártico y **lluvias** fuertes en el Sur Argentino (Patagonia)

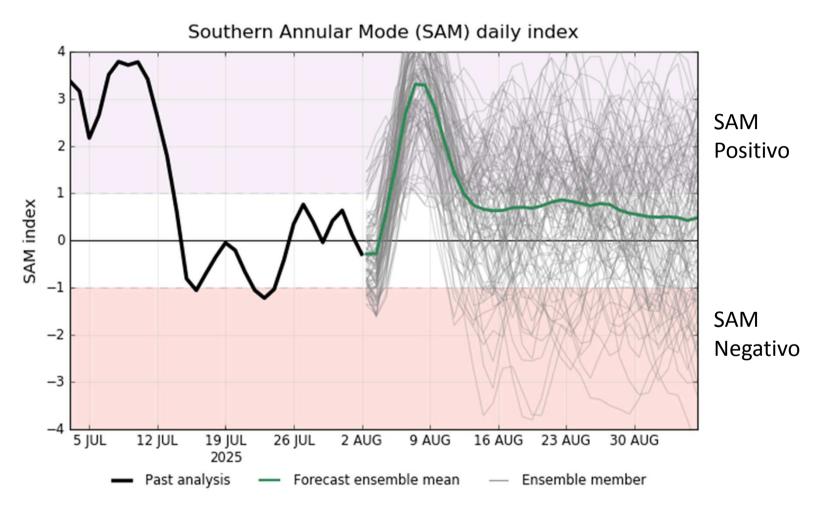

Fuente:

en el


continente

Adaptado de M.E. Fernández Long, 2025.

Fase Positiva



Fase Negativa

Oscilaciones de SAM observadas (línea negra) y Predichas (líneas finas y verde) entre el 24-5 y fin de Julio.

Nota: Los ciclos de SAM son de frecuencia semanal (se miden en semanas).

Variabilidad climática y el rendimiento de maíz temprano en Argentina: el papel de El Niño Oscilación del Sur (ONI), y otras señales asociadas al clima.

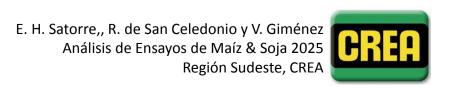
	T																														
	IOD										ONI										AAO										
DEPTO .	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	
CHASCOMUS	0.21	0.30	0.23	0.35	0.38	0.42	0.31	0.50	0.48	0.41	0.57	0.59	0.59	0.58	0.55	0.54	0.52	0.47	0.48	0.41	0.21	-0.15	-0.12	-0.34	-0.46	-0.55	-0.51	-0.09	0.13	0.05	
MEPCEDES	0.19	0.28	0.37	0.42	0.44	0.51	0.43	0.56	0.55	0.55	0.69	0.66	0.66	0.66	0.66	0.69	0.68	0.69	0.66	0.58	0.17	-0.07	-0.06	-0.28	-0.43	-0.46	-0.51	-0.14	0.12	0.12	
SUIPACHA	0.28	0.27	0.32	0.34	0.35	0.41	0.35	0.49	0.46	0.44	0.55	0.53	0.54	0.56	0.57	0.60	0.60	0.60	0.59	0.53	0.28	-0.10	-0.03	-0.21	-0.43	-0.55	-0.52	-0.21	0.18	0.08	
CHIVILCOY	0.10	0.18	0.12	0.25	0.27	0.31	0.15	0.40	0.44	0.37	0.47	0.46	0.48	0.49	0.48	0.50	0.49	0.46	0.47	0.45	0.35	-0.23	-0.07	-0.22	-0.34	-0.50	-0.54	-0.03	0.24	0.20	
NAVARRO	0.09	0.23	0.21	0.31	0.33	0.37	0.21	0.40	0.41	0.31	0.48	0.51	0.53	0.52	0.50	0.50	0.49	0.44	0.44	0.40	0.24	-0.20	-0.13	-0.31	-0.51	-0.55	-0.58	-0.05	0.22	0.13	
ALBERTT	0.01	0.15	0.11	0.18	0.18	0.24	0.15	0.37	0.40	0.36	0.50	0.47	0.50	0.49	0.48	0.49	0.50	0.48	0.49	0.47	0.34	-0.10	0.06	-0.16	-0.26	-0.50	-0.46	0.05	0.25	0.17	
CANUELAS	0.17	0.27	0.23	0.33	0.36	0.41	0.32	0.50	0.48	0.40	0.52	0.54	0.56	0.56	0.55	0.54	0.54	0.50	0.51	0.47	0.14	-0.18	-0.09	-0.25	-0.42	-0.48	-0.52	-0.03	0.12	0.10	
LOBOS	0.10	0.21	0.18	0.30	0.33	0.40	0.27	0.46	0.43	0.37	0.51	0.55	0.58	0.57	0.55	0.56	0.55	0.52	0.51	0.44	0.28	-0.23	-0.06	-0.26	-0.44	-0.59	-0.59	-0.17	0.20	0.11	
ROQUEPEREZ	0.13	0.23	0.18	0.30	0.31	0.37	0.21	0.38	0.38	0.28	0.49	0.52	0.54	0.52	0.50	0.50	0.48	0.43	0.42	0.37	0.32	-0.16	-0.05	-0.30	-0.46	-0.58	-0.57	-0.06	0.21	0.06	
MONTE	0.13	0.24	0.24	0.34	0.37	0.43	0.33	0.49	0.46	0.38	0.53	0.55	0.58	0.57	0.55	0.55	0.54	0.50	0.48	0.41	0.18	-0.16	-0.11	-0.30	-0.38	-0.43	-0.52	-0.06	0.15	0.06	
25 DEMAYO	-0.01	0.15	0.17	0.28	0.30	0.34	0.14	0.33	0.35	0.27	0.45	0.49	0.52	0.51	0.49	0.51	0.49	0.45	0.44	0.40	0.32	-0.20	-0.17	-0.30	-0.51	-0.57	-0.59	-0.06	0.19	0.19	
SALADILLO	0.16	0.24	0.18	0.31	0.32	0.37	0.20	0.36	0.35	0.24	0.46	0.48	0.50	0.48	0.46	0.47	0.46	0.42	0.39	0.33	0.31	-0.18	-0.03	-0.26	-0.46	-0.58	-0.57	-0.12	0.16	0.07	
ENERALBELGRAN	0.04	0.15	0.11	0.23	0.27	0.32	0.22	0.39	0.38	0.30	0.46	0.52	0.56	0.55	0.53	0.53	0.53	0.47	0.48	0.42	0.26	-0.18	-0.14	-0.23	-0.46	-0.64	-0.59	-0.14	0.07	0.07	
LASFLORES	0.16	0.26	0.20	0.32	0.35	0.40	0.26	0.42	0.39	0.28	0.48	0.51	0.55	0.53	0.50	0.50	0.50	0.44	0.43	0.37	0.26	-0.12	-0.06	-0.27	-0.40	-0.53	-0.51	-0.04	0.12	0.04	
CASTELLI	0.28	0.25	0.22	0.27	0.26	0.25	0.04	0.23	0.15	0.07	0.20	0.23	0.25	0.24	0.22	0.21	0.20	0.19	0.20	0.15	0.21	-0.07	-0.11	0.00	-0.26	-0.36	-0.23	0.06	0.25	0.04	
PILA	0.20	0.10	0.03	0.08	0.09	0.07	-0.07	0.12	0.05	0.06	0.26	0.23	0.21	0.19	0.19	0.18	0.20	0.22	0.25	0.23	0.26	0.05	0.15	-0.06	-0.24	-0.41	-0.21	0.05	0.20	0.01	
TAPALQUE	-0.02	0.20	0.28	0.30	0.36	0.45	0.33	0.44	0.36	0.38	0.47	0.54	0.55	0.54	0.52	0.49	0.48	0.49	0.46	0.36	0.15	-0.13	-0.07	-0.21	-0.37	-0.36	-0.35	-0.24	0.21	0.10	
RAUCH	0.26	0.30	0.21	0.22	0.19	0.20	-0.02	0.16	0.00	-0.04	0.22	0.20	0.21	0.17	0.16	0.14	0.17	0.19	0.18	0.12	0.09	-0.03	0.00	0.05	-0.35	-0.32	-0.17	-0.07	0.12	-0.02	
AZUL	0.23	0.25	0.24	0.23	0.19	0.27	0.09	0.20	0.03	0.06	0.15	0.16	0.18	0.16	0.15	0.13	0.17	0.23	0.21	0.13	-0.12	-0.11	-0.06	0.21	-0.31	-0.22	-0.20	-0.22	0.02	0.03	

Spatial distribution of correlation values between the climate indices Indian Ocean Dipole (IOD), Antarctic Oscillation (AAO) and Oceanic Niño Index (ONI) and early maize yield anomalies across some departments in **SE-NN, CREA**.

Adaptado de Baldassini et.al., 2025; DOI: https://doi.org/10.21203/rs.3.rs-6269402/v1

Escenario esperado para los cultivos de Verano (salida de invierno y primavera) en 2025:

- **El aspecto más importante:** Las precipitaciones de Otoño/invierno al momento han permitido recargar perfiles de humedad del suelo.
- La predicción del trimestre (Ago-Sep-Oct) es de lluvias dentro del rango histórico (con toda su variabilidad) o levemente por debajo de lo normal (IRI& ABM).
- La campaña 2025-26, para cultivos de verano, mantiene un escenario
 Neutro. La probabilidad de Niña es algo superior a su histórico y aumentaría según modelos de IRI-AMB la probabilidad de lluvias debajo de lo normal en primavera. Las temperaturas se mantienen por encima de lo normal.
- El forzante del Océano Índico "IOD" transitaría valores negativos a inicio de primavera (refuerza los pronósticos de IRI en ese momento) y volvería a una condición neutra en Nov-Dic.
- El agua almacenada en el suelo a la fecha, es un factor clave. En relación a las proyecciones estacionales, es necesario seguir el desarrollo de las señales pues están cambiando.



REGIÓN CREA Sudeste Análisis conjunto Núcleo Norte y Sur de

la Cosecha Gruesa en la campaña 2024/25

Jornada de Análisis de Campaña - Región CREA Sudeste Rauch, Pcia. de Buenos Aires, 12 de Agosto de 2025

