

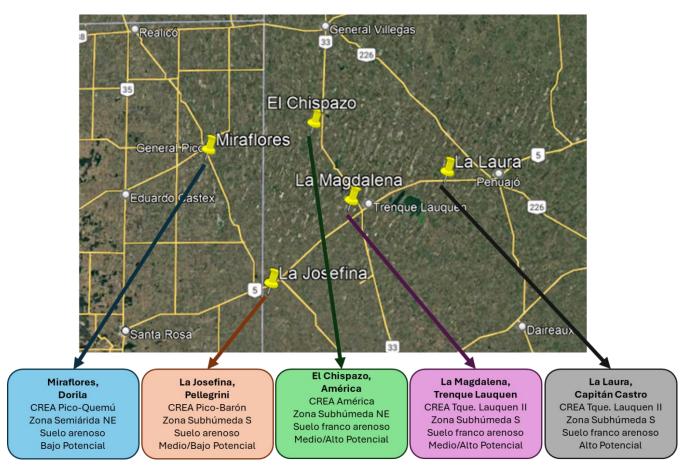
CULTIVO DE TRIGO CAMPAÑA 2024-2025 RESULTADOS DE EXPERIMENTACIÓN GRUPO DE ACCIÓN AGRÍCOLA CREA REGIÓN OESTE ARENOSO

Coordinación General: Agustín Giorno

Coordinación Académica: Diego Hernán Rotili

Coordinación Experimental: Juan Olmos

Responsable de Experimentos: Lucas Demateis


Agradecimientos

- A los campos anfitriones y los equipos de trabajo
 - o Est. El Chispazo: CREA América
 - o Est. La Josefina: CREA Pico-Barón
 - o Est. La Laura: CREA Trenque Lauquen II
 - Est. La Magdalena: CREA Trenque Lauquen II
 - o Est. Miraflores: CREA Pico-Quemú
- A las empresas que participaron con sus productos, por su apoyo al plan de trabajo.
- Al Grupo de Acción Agrícola (GAA) de la Región Oeste Arenoso CREA.
- A la Mesa de Asesores CREA de la Región Oeste Arenoso.
- A nuestros colaboradores externos.
- Al equipo experimental del GAA.

Localidades y Experimentos 2024-2025

Figura 1. Ubicación y descripción sitios experimentales trigo CREA Oeste Arenoso 2024-2025.

Debajo se detallan las líneas de trabajo regionales y las localidades adonde se realizaron experimentos de cada línea de trabajo:

- Genética: ensayos comparativos de cultivares comerciales. (Dorila, América, Trenque Lauquen, Capitán Castro).
- Estimulación o fertilización de origen químico o biológico mediante tratamiento de semillas y/o tratamiento de aplicación foliar. (Dorila, América, Capitán Castro).
- Estrategias de fertilización nitrogenada y azufrada según dosis y momentos de aplicación. (Dorila, Pellegrini, América, Capitán Castro).
- Brechas de rendimiento en el cultivo de trigo. (Trenque Lauquen).

Características de los sitios, siembra y condiciones de la campaña

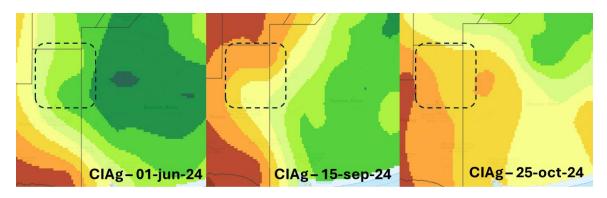

La campaña de fina 2024-2025 presentó condiciones ambientales desafiantes para la generación de rendimiento del cultivo de trigo en la región. En general, la recarga otoñal por precipitaciones generó un gradiente de agua a la siembra este-oeste, con humedades sub-óptimas en los sitios de los ensayos. La evolución del agua en el perfil fue similar entre localidades, aunque con diferencias de magnitud de las condiciones de sequía. Los experimentos posicionados al este de la región (La Laura – Capitán Castro y La Magdalena – Trenque Lauquen) presentaron una condición de humedad en el perfil más elevada que los posicionados al norte y oeste (El Chispazo – América, La Josefina – Pellegrini y Miraflores - Dorila), tanto al promediar estadios vegetativos (15 de septiembre) como también al promediar su etapa de floración (25 de octubre). Además, se registraron numerosas heladas de gran magnitud durante los meses de junio, julio y agosto en la región, pero no ocurrió ningún evento de heladas importante a partir de mediados de septiembre.

Tabla 1. Características de los sitios a la siembra.

Establecimiento	Nombre	Miraflores	La Josefina	El Chispazo	La Magdalena	La Laura
Localidad	Próxima	Dorila	Pellegrini	América	Trenque Lauquen	Capitán Castro
Grupo CREA	Nombre	Pico-Quemú	Pico-Barón	América	Trenque Lauquen II	Trenque Lauquen II
Antecesor	Cultivo	Soja	Girasol	Soja	Girasol	Girasol
1ra Fecha de siembra	dd-mmm-aa	07-jun-24	01-jun-24	14-jun-24	04-jun-24	13-jun-24
2da Fecha de siembra	dd-mmm-aa	-	-	-	02-jul-24	-
Distanciamiento entre hileras	cm	21	17.5	21	20	21
Materia Orgánica	% 0-20 cm	1.4	1.2	2.1	sd	2.7
P extractable	ppm 0-20 cm	10.6	17.9	8.7	sd	7.7
N total ECR (suelo + fertilizante)	kg/ha 0-60 cm	118	No hubo ECR	233	120	130
Azufre de sulfatos	ppm 0-20 cm	6.7	8.5	6.3	sd	5.6
рН	unidades	6.7	7.7	6.3	sd	6.4
Fertilización inicial	kg/ha (tipo)	100 (MAP)	90 (7-40-0-5)	120 (MAP)	Sin fertilizante	120 (MAP)

Figura 2. Evolución del agua útil en el perfil a lo largo de la campaña (CIAg).

Fenología de referencia (cultivar de ciclo intermedio-largo con fecha de siembra 5-jun en Trenque Lauquen, en base a CRONOTRIGO):

Siembra: 5-jun; Emergencia: 20-jun; Primer nudo: 9-sep; Espigazón: 20-oct; Antesis: 24-oct; Madurez Fisiológica: 25-nov

Genética: Ensayos comparativos de cultivares

Miraflores, Dorila, CREA Pico-Quemú.

Tabla 2. Resultados ECR Miraflores, Dorila.

Cultivar	Semillero	Ciclo	Rendimiento (kg/ha)	Signif. (alfa=0,05)
Baguette 750	Nidera	Largo	3055	Α
Buck SY134	Buck	Int.Largo	2686	AB
Buck Destello	Buck	Largo	2642	В
DM Araucaria	Don Mario	Largo	2636	В
DM Catalpa	Don Mario	Intermedio	2434	BC
Arce	Bioceres	Corto	2423	BC
Baguette 525	Nidera	Corto	2130	CD
DM Casuarina	Don Mario	Intermedio	2126	CD
Buck SY109	Buck	Int.Largo	2108	CD
Klein Extremo	Klein	Int.Largo	2061	CDE
Arazá	Bioceres	Int.Largo	2002	DE
RGT Quiriko	RAGT	Intermedio	1905	DE
LG Picazo	Limagrain	Corto	1843	DEF
Laurel	Bioceres	Int.Largo	1800	DEF
Baguette 610	Nidera	Intermedio	1755	DEFG
Klein Leyenda	Klein	Intermedio	1705	EFG
LG Moro	Limagrain	Intermedio	1502	FG
Buck Fulgor	Buck	Corto	1395	G

En Miraflores se registraron diferencias significativas en rendimiento entre cultivares. El rendimiento promedio fue de 2123 kg/ha. Los cultivares Baguette 750 y Buck SY134 se encontraron dentro del grupo de mayor rendimiento.

El Chispazo, América, CREA América

Tabla 3. Resultados ECR El Chispazo, América.

Cultivar	Semillero	Ciclo	Rendimiento (kg/ha)	Signif. (alfa=0,05)
DM Araucaria	Don Mario	Largo	3473	Α
Buck Destello	Buck	Largo	3252	AB
Buck SY134	Buck	Int.Largo	2944	ABC
DM Catalpa	Don Mario	Intermedio	2554	BCD
DM Casuarina	Don Mario	Intermedio	2518	BCD
LG Picazo	Limagrain	Corto	2510	BCD
Arazá	Bioceres	Int.Largo	2414	CDE
Baguette 750	Nidera	Largo	2365	CDE
Buck Fulgor	Buck	Corto	2322	CDE
Buck SY109	Buck	Int.Largo	2190	CDE
Klein Extremo	Klein	Int.Largo	2169	CDE
Baguette 610	Nidera	Intermedio	2072	DE
Baguette 525	Nidera	Corto	2026	DE
RGT Quiriko	RAGT	Intermedio	1997	DE
Klein Leyenda	Klein	Intermedio	1943	DE
Arce	Bioceres	Corto	1929	DE
Laurel	Bioceres	Int.Largo	<i>17</i> 67	DE
LG Moro	Limagrain	Intermedio	1627	Ε

En El Chispazo se registraron diferencias significativas en rendimiento entre cultivares. El rendimiento promedio fue de 2337 kg/ha. Los cultivares DM Araucaria, Buck Destello y Buck SY134 se encontraron dentro del grupo de mayor rendimiento.

.

La Magdalena, Trenque Lauquen, CREA Trenque Lauquen II

Tabla 4. Resultados ECR La Magdalena, Trenque Lauquen.

Cultivar	Semillero	Ciclo	Rendimiento (kg/ha)	Signif. (alfa=0,05)
Buck SY109	Buck	Int.Largo	4417	Α
Buck Destello	Buck	Largo	4223	AB
Baguette 610	Nidera	Intermedio	3964	ABC
DM Araucaria	Don Mario	Largo	3908	ABC
Baguette 750	Nidera	Largo	3784	ABCD
Buck SY134	Buck	Int.Largo	<i>37</i> 50	ABCD
LG Moro	Limagrain	Intermedio	3549	BCD
Klein Leyenda	Klein	Intermedio	3503	BCD
DM Casuarina	Don Mario	Intermedio	3495	BCD
Laurel	Bioceres	Int.Largo	3491	BCD
Klein Extremo	Klein	Int.Largo	3435	BCD
Arazá	Bioceres	Int.Largo	3164	CD
DM Catalpa	Don Mario	Intermedio	3021	D
RGT Quiriko	RAGT	Intermedio	2999	D
Arce	Bioceres	Corto	995	Ε
Buck Fulgor	Buck	Corto	897	Ε
LG Picazo	Limagrain	Corto	849	Ε
Baguette 525	Nidera	Corto	<i>7</i> 10	Ε

^{*}En este ensayo los ciclos largos se sembraron el 4 de junio y los ciclos cortos el 2 de julio.

En La Magdalena se registraron diferencias significativas en rendimiento entre cultivares. El rendimiento promedio fue de 3009 kg/ha. Los cultivares Buck SY109, Buck Destello, Baguette 610, DM Araucaria, Baguette 750 y Buck SY134 se encontraron dentro del grupo de mayor rendimiento.

La Laura, Capitán Castro, CREA Trenque Lauquen II

Tabla 5. Resultados ECR La Laura, Capitán Castro.

Cultivar	Semillero	Ciclo	Rendimiento (kg/ha)	Signif. (alfa=0,1)
DM Araucaria	Don Mario	Largo	5316	Α
Buck Fulgor	Buck	Corto	5166	Α
DM Casuarina	Don Mario	Intermedio	5042	AB
Arazá	Bioceres	Int.Largo	4988	AB
Klein Extremo	Klein	Int.Largo	4849	ABC
Buck SY134	Buck	Int.Largo	4825	ABC
Buck Destello	Buck	Largo	4627	ABCD
Baguette 610	Nidera	Intermedio	4570	ABCD
RGT Quiriko	RAGT	Intermedio	4513	ABCD
DM Catalpa	Don Mario	Intermedio	<i>4</i> 359	ABCD
Baguette 525	Nidera	Corto	4330	ABCD
LG Picazo	Limagrain	Corto	4301	ABCD
Buck SY109	Buck	Int.Largo	<i>42</i> 58	ABCD
LG Moro	Limagrain	Intermedio	4006	BCD
Laurel	Bioceres	Int.Largo	3900	BCD
Klein Leyenda	Klein	Intermedio	<i>37</i> 99	CD
Arce	Bioceres	Corto	<i>37</i> 68	CD
Baguette 750	Nidera	Largo	3501	D

En La Laura se registraron diferencias significativas en rendimiento entre cultivares. El rendimiento promedio fue de 4451 kg/ha. Los cultivares DM Araucaria, Buck Fulgor, DM Casuarina, Arazá, Klein Extremo, Buck SY134, Buck Destello, Baguette 610, RGT Quiriko, DM Catalpa, Baguette 525, LG Picazo y Buck SY109 se encontraron dentro del grupo de mayor rendimiento.

.

Resumen - Resultados Generales Genética - Campaña 2024-2025

En las 4 localidades se instalaron ensayos comparativos de rendimiento de cultivares con los cultivares repetidos en todos los ensayos. Las fechas de siembra fueron de entre el 4 y el 14 de junio en todas las localidades para todos los cultivares, con la excepción de La Magdalena en donde los cultivares de ciclo corto se sembraron el 2 de julio. En todas las localidades se encontraron diferencias significativas (a:0.05).

Al analizar las 4 localidades en conjunto, encontramos que se exploraron ambientes con rendimiento promedio de entre 2123 y 4451 kg/ha y un rendimiento promedio general de 2980 kg/ha. En la comparación regional, los cultivares que se encontraron dentro del grupo de mayor rendimiento fueron DM Araucaria, Buck Destello, Buck SY134, DM Casuarina, Buck SY109, Baguette 750, Arazá, Klein Extremo, DM Catalpa y Baguette 610. La estabilidad (CV%) del rendimiento también fue diferencial entre cultivares.

Tabla 6. Resultados regionales ECR Trigo CREA Oeste Arenoso 2024-2025.

			El Chispazo	La Magdalena	La Laura	Miraflores		Signif.	
			América	Trenque Lauquen	Capitán Castro	Dorila	Rendimiento	(alfa =	CV%
Variedad	Empresa	Ciclo	FS = 14/6	FS = 4/6 (Int/Lar) 2/7 (Cortos)	FS = 13/6	FS = 7/6	promedio (kg/ha)	0,05)	CV 70
DM Araucaria	Don Mario	Largo	3473	3908	5316	2636	3833	Α	29%
Buck Destello	Buck	Largo	3252	4223	4627	2642	3686	AB	25 %
Buck SY134	Buck	Int.Largo	2944	3750	4825	2686	3551	ABC	27 %
DM Casuarina	Don Mario	Intermedio	2518	3495	5042	2126	3295	ABCD	39%
Buck SY109	Buck	Int.Largo	2190	4417	4258	2108	3244	ABCDE	39%
Baguette 750	Nidera	Largo	2365	3784	3501	3055	3176	ABCDEF	19%
Arazá	Bioceres	Int.Largo	2414	3164	4988	2002	3142	ABCDEF	42 %
Klein Extremo	Klein	Int.Largo	2169	3435	4849	2061	3129	ABCDEF	42 %
DM Catalpa	Don Mario	Intermedio	2554	3021	4359	2434	3092	ABCDEF	29%
Baguette 610	Nidera	Intermedio	2072	3964	4570	1755	3090	ABCDEF	45 %
RGT Quiriko	RAGT	Intermedio	1997	2999	4513	1905	2853	BCDEF	42 %
Laurel	Bioceres	Int.Largo	1767	3491	3900	1800	2739	BCDEF	41%
Klein Leyenda	Klein	Intermedio	1943	3503	3799	1705	2738	BCDEF	39%
LG Moro	Limagrain	Intermedio	1627	3549	4006	1502	2671	CDEF	48%
Buck Fulgor	Buck	Corto	2322	897	5166	1395	2445	DEF	78 %
LG Picazo	Limagrain	Corto	2510	849	4301	1843	2376	DEF	61%
Baguette 525	Nidera	Corto	2026	710	4330	2130	2299	EF	65%
Arce	Bioceres	Corto	1929	995	3768	2423	2279	F	51%
Índice Ambiental	(kg/ha)		2337	3009	4451	2123	2980		

Tratamientos de semillas y/o foliares

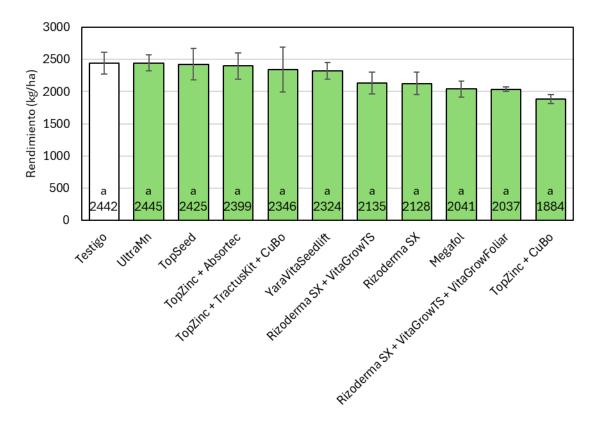
Efecto de la aplicación de estimulantes de origen biológico y químico sobre el rendimiento de trigo.

Durante los últimos años hemos apreciado un crecimiento en el registro y difusión de diferentes tecnologías para el tratamiento de semillas. Muchas de estas tecnologías tienen por objetivo estimular el crecimiento en etapas iniciales del ciclo del cultivo de trigo, como también mitigar el estrés asociado a factores bióticos o abióticos presentes en el sistema (ej: enfermedades, sequías). Los mecanismos de acción de esta nueva generación de insumos se estudian en la actualidad intensamente, aunque la información acerca de su efecto directo sobre el rendimiento para determinados sistemas de producción es escasa. El objetivo de esta línea de trabajo fue evaluar el efecto de diferentes productos estimulantes o promotores elaborados a partir de sustancias de origen biológico o bien de síntesis química, tanto en los formatos de aplicación a la semilla, aplicación foliar o una combinación de ambos. Todos los tratamientos de semilla se aplicaron sobre semilla previamente tratada con un fungicida tradicional.

Tabla 7. Tratamientos de semillas y/o foliares ensayados.

Tratamiento	Empresa	Tratamiento semilla (dosis)	Tratamiento foliar (dosis)	
1	-	Testigo	Testigo	
2	Spraytec	TopSeed (60 cc / 20 kg)	-	
3	Spraytec	Ultra Mn (60 cc / 20 kg)	-	
4	YARA	YaraVita Seedlift (60 cc / 20 kg)	-	
5	Rizobacter	Rizoderma SX (40 cc / 20 kg)	-	
6	Rizobacter	Rizoderma SX + Vitagrow TS (40 + 16 cc / 20 kg)	-	
7	Rizobacter	Rizoderma SX + Vitagrow TS (40 + 16 cc / 20 kg)	Vitagrow Foliar en Z31 (150 cc / ha)	
8	Spraytec	-	TopZinc + Cubo (300 + 200 cc / ha)	
9	Spraytec	-	TopZinc + Absortec (200 cc + 4 l / ha)	
10	Spraytec	-	TopZinc + Tractus Kit + Cubo (300 cc + 500 g + 200 cc / ha)	
11	Syngenta	-	Megafol (2 l / ha)	

Tratamiento	Empresa	Nombre resumen
1	-	Testigo
2	Spraytec	TopSeed
3	Spraytec	UltraMn
4	YARA	YaraVita Seedlift
5	Rizobacter	Rizoderma SX
6	Rizobacter	Rizoderma SX + Megafol
7	Rizobacter	Rizoderma SX + VitaGrowTS + VitaGrowFoliar
8	Spraytec	TopZinc + Cubo
9	Spraytec	TopZinc + Absortec
10	Spraytec	TopZinc + Tractus Kit + CuBo
11	Syngenta	Megafol

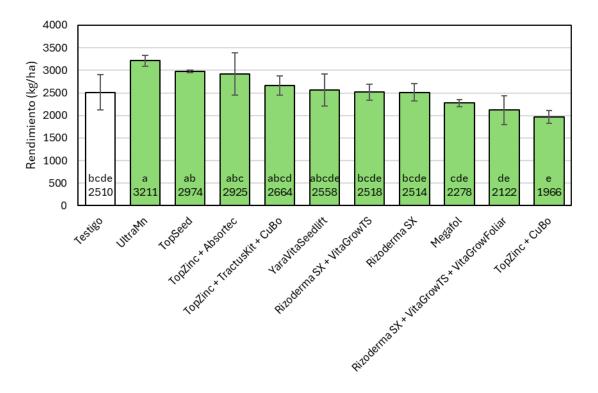


Resultados

Miraflores, Dorila, CREA Pico-Quemú

El experimento se realizó sobre la variedad DM Catalpa, con las condiciones del sitio y manejo tal cual se describió en la Tabla 1 (ver arriba). El testigo arrojó un rendimiento promedio de 2442 kg/ha. No existieron diferencias significativas entre tratamientos y ningún tratamiento se diferenció del testigo.

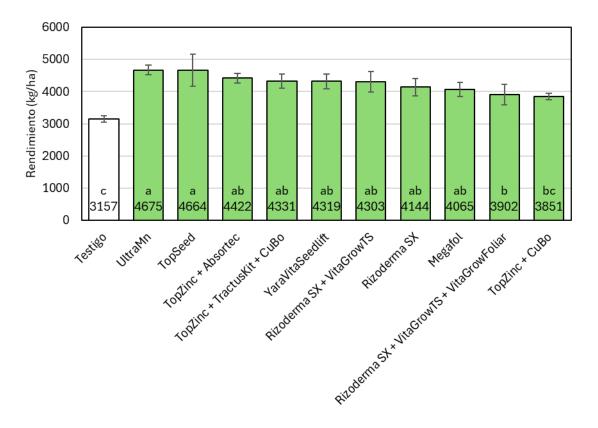
Figura 3. Resultados tratamientos de semilla y/o foliares en Miraflores, Dorila.



El Chispazo, América, CREA América

El experimento se realizó sobre la variedad DM Catalpa, con las condiciones del sitio y manejo tal cual se describió en la Tabla 1 (ver arriba). El testigo arrojó un rendimiento promedio de 2510 kg/ha. El único tratamiento que superó significativamente el rendimiento obtenido con el testigo fue el UltraMn.

Figura 4. Resultados tratamientos de semilla y/o foliares en El Chispazo, América.



La Laura, Capitán Castro, CREA Trenque Lauquen II

El experimento se realizó sobre la variedad DM Catalpa, con las condiciones del sitio y manejo tal cual se describió en la Tabla 1 (ver arriba). El testigo arrojó un rendimiento promedio de 3157 kg/ha. El único tratamiento que no superó significativamente el rendimiento obtenido con el testigo fue el TopZinc + CuBo; el resto de los tratamientos sí superó al testigo, en mayor o menor magnitud.

Figura 5. Resultados tratamientos de semilla y/o foliares en La Laura, Capitán Castro.

Resumen - Tratamiento de Semillas y/o Foliares

Durante la campaña 2024/2025 se realizaron 3 experimentos de evaluación de tratamientos de semillas y/o foliares. Se exploraron rendimientos del testigo sin tratar (sólo con un curasemillas base) de entre 2442 y 3157 kg/ha. En 2 de las 3 localidades el tratamiento de semillas y/o foliar impactó sobre el rendimiento de manera significativa (α: 0.05), mientras que en la restante localidad no generaron un efecto estadístico sobre el rendimiento.

Al analizar las respuestas en conjunto para las 3 localidades, encontramos que el rendimiento medio de los tratamientos superó al testigo entre 19 y 629 kg/ha, dependiendo del tratamiento evaluado. Dentro de los ambientes analizados, la magnitud de las respuestas obtenidas fue mayor cuanto mayor fue el rendimiento del testigo con el rendimiento medio de la localidad (o su potencial de rendimiento). Este tipo de experiencias nos propone abordar de manera empírica el efecto de estas nuevas tecnologías sobre los rendimientos en nuestros cultivos.

Tabla 8. Resultados regionales tratamientos de semilla y/o foliares sobre trigo CREA Oeste Arenoso campaña 2024-2025.

		El Chispazo	Miraflores	La Laura	PROMEDIO	Respuesta versus
Tratamiento	Empresa	América	Dorila	Capitán Castro	(kg/ha)	testigo (kg/ha)
TopSeed	Spraytec	2974	2346	4675	3332	629
UltraMn	Spraytec	3211	2425	4331	3322	619
TopZinc + TractusKit + CuBo	Spraytec	2664	2399	4664	3242	539
YaraVitaSeedlift	YARA	2558	2445	4422	3142	439
Rizoderma SX + VitaGrowTS	Rizobacter	2518	2324	4144	2995	292
TopZinc + Absortec	Spraytec	2925	2037	3851	2937	234
Megafol	Syngenta	2278	2041	4319	2879	176
Rizoderma SX + VitaGrowTS + VitaGrowFoliar	Rizobacter	2122	2128	4303	2851	148
Rizoderma SX	Rizobacter	2514	1884	3902	2767	64
TopZinc + CuBo	Spraytec	1966	2135	4065	2722	19
Testigo	-	2510	2442	3157	2703	-

Factores limitantes del rendimiento en el cultivo de Trigo - Brechas

Los rendimientos alcanzables sin limitaciones por un uso de insumos sub-óptimo (agronómico), en las condiciones ambientales del oeste arenoso, deben ser caracterizados para comprender las brechas de producción que el manejo actual del cultivo de trigo propone.

El objetivo de esta línea de trabajo es cuantificar dicha brecha, mediante la comparación del manejo actual y un manejo donde el uso de insumos (fertilizantes, semillas y fitosanitarios) no sean limitantes. Por otra parte, se propone establecer una fracción aditiva de dicha brecha a distintos factores de manejo:

- Macronutrientes (N, P y S)
- Micronutrientes (Mg, Bo, Zn, Cu)
- Genética
- Protección

De este modo, para determinar el efecto de cada uno de estos factores, se realizaron tratamientos de escalonamiento de la adición de insumos, en el cual el manejo sin limitaciones de insumos establece el "Rendimiento Potencial". La "Brecha total de rendimiento" y los efectos de diferentes insumos sobre la reducción de la brecha se obtiene a partir de un protocolo en donde los factores se van reduciendo secuencialmente siguiendo la lógica de toma de decisiones hasta alcanzar el manejo del productor en el campo. El factor "genética" se evalúa mediante la siembra de una o más cultivares alternativos al utilizado por el productor.

La comparación entre el rendimiento obtenido mediante el manejo del productor y el manejo sin limitaciones establece la "Brecha total de rendimiento". El efecto de un factor sobre la brecha de rendimiento se estima mediante la diferencia entre el escalón de producción inmediatamente superior (ej. "Sin limitantes", que incluye la elección de la mejor genética dentro de las evaluadas en el ensayo) versus el escalón de producción con ese insumo manejado tal cual en el lote de producción (ej. con la genética promedio dentro de las evaluadas, asumiendo que en la región se elige aleatoriamente dentro de toda la genética disponible en el mercado). Así, cada factor tendrá un efecto "aditivo" (i.e. sin interactuar con otros factores) sobre la brecha total. Como otro ejemplo, la brecha atribuida a la

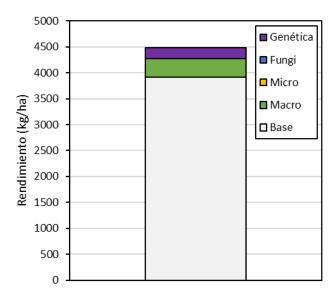
restricción por macronutrientes se estima a través de la comparación del rendimiento con una alta provisión de macronutrientes versus el rendimiento con la provisión de macronutrientes del lote de producción del ensayo, sin haber modificado el resto de los factores de provisión de insumos.

Durante la campaña 2024-2025 se montó 1 experimento de campo empleando la metodología propuesta, en el establecimiento La Magdalena, en Trenque Lauquen.

Resultados

La Magdalena, Trenque Lauquen, CREA Trenque Lauquen II

Tabla 9. Tratamiento actual y "sin limitantes" y factores evaluados secuencialmente como determinantes de la brecha de rendimiento.


Factor	Manejo Actual	Manejo "Sin Limitantes"			
Modelo N alcanzado	135 kg/ha	200 kg/ha			
Azufre aplicado total	12 kg/ha	35 kg/ha			
Micronutrientes	Sin	TopZinc + CuBo + TractusKit			
Manejo sanitario	Sin fungicida	Elatus Ace			
Cultivares evaluados	Baguette 750, DM Catalpa				

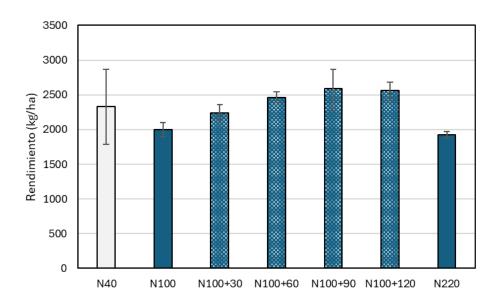
El rendimiento alcanzable sin limitaciones por insumos ("potencial") en el ambiente explorado fue de 4489 kg/ha, mientras que el rendimiento alcanzado (emulando el manejo aplicado por la empresa anfitriona a dicho lote) fue de 3911 kg/ha. De este modo, se estableció una brecha total de rendimiento de 577 kg/ha, lo que significa que el manejo del lote en ese ambiente explorado alcanzó un 87% del rendimiento potencial.

- Los factores (dentro de los evaluados) que permitieron reducir la brecha de rendimiento desde el manejo propio de la empresa en el lote de producción hasta el rendimiento potencial fueron los macronutrientes (N y S en dosis mayores) (brecha de 368 kg/ha) y la elección del mejor cultivar cuando los demás factores ya se encontraron con una oferta de insumos máxima (brecha de 210 kg/ha). Los micronutrientes y la protección del cultivo no fueron factores determinantes de la brecha en este caso.

Figura 6. Rendimiento potencial, rendimiento actual y factores causantes de la brecha en trigo en La Magdalena, Trenque Lauquen, campaña 2024-2025.

Estrategias de fertilización en el cultivo de Trigo

Los suelos del oeste arenoso vienen sufriendo un minado de nutrientes consistente desde hace varias décadas, determinando la probabilidad de que sea necesario aportar nutrientes por medio de fertilizantes para suplir las necesidades del cultivo de trigo y evitar restricciones a su crecimiento. Muchos modelos de fertilización se han ajustado a las condiciones regionales en el pasado. Sin embargo, los modelos de fertilización deben ser actualizados de acuerdo con la evolución genética y la variabilidad ambiental espacial presente en la zona. Adicionalmente, la variabilidad interanual de las condiciones ambientales en el oeste arenoso determina alta incertidumbre acerca de la respuesta esperada a la adición del nitrógeno en modelos que incluyen una fertilización de dosis completa temprana. Por estos motivos, hace varios años se vienen realizando en la región Oeste Arenoso de CREA ensayos en los que se combina el aporte de nitrógeno en diferentes dosis y momentos en combinación con fertilización azufrada.


Resultados

Miraflores, Dorila, CREA Pico-Quemú

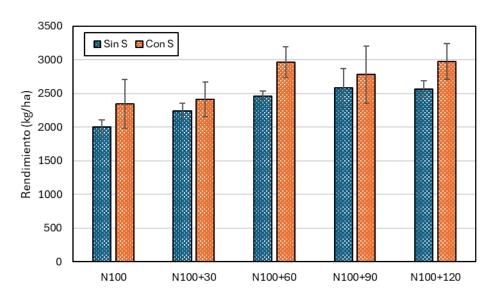
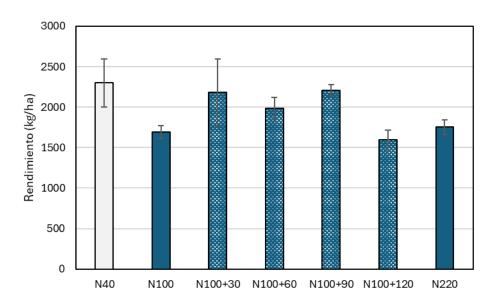

En Miraflores, Dorila, el ensayo se llevó a cabo utilizando el cultivar DM Catalpa, con las condiciones del sitio y manejo tal cual se describió en la Tabla 1 (ver arriba). El rendimiento del cultivo sin fertilizar (N40) fue de 2328 kg/ha, y la respuesta del rendimiento a la fertilización nitrogenada evaluada como el modelo total de N a la siembra de N40 versus N100 o N220 no fue significativa. Si se lo compara con el tratamiento de fertilización nitrogenada de N100 a la siembra, la estrategia de refertilización en Z32 generó un impacto levemente positivo sobre el rendimiento, con una respuesta dosis-dependiente de aproximadamente 6,5 kg grano / kg N aplicado, alcanzando un plateau en el tratamiento de N100+90 (2585 kg/ha). La fertilización azufrada, por su parte, generó un impacto positivo sobre el rendimiento de 380 kg/ha, sin interacción con la oferta de nitrógeno.

Figura 7. Rendimiento de trigo para diferentes tratamientos de fertilización nitrogenada en Miraflores, Dorila, campaña 2024-2025. Se muestra el resultado de todos aquellos tratamientos que no tuvieron fertilización azufrada durante el ciclo del cultivo.

Figura 8. Rendimiento de trigo para diferentes tratamientos de fertilización nitrogenada sin (azul) y con (naranja) azufre en Miraflores, Dorila, campaña 2024-2025.



La Josefina, Pellegrini, CREA Pico-Barón

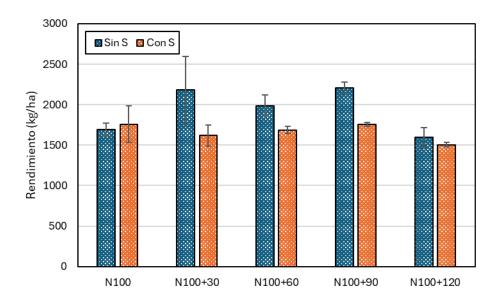
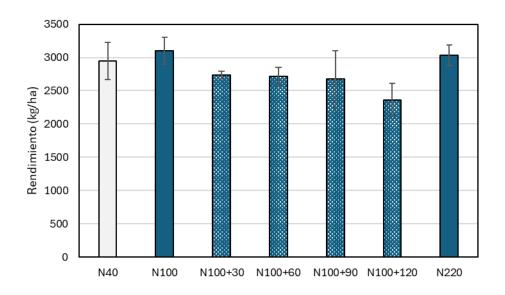

En La Josefina, Pellegrini, Dorila, el ensayo se llevó a cabo utilizando el cultivar Baguette 750, con las condiciones del sitio y manejo tal cual se describió en la Tabla 1 (ver arriba). El rendimiento del cultivo sin fertilizar (N40) fue de 2299 kg/ha, y la respuesta del rendimiento a la fertilización nitrogenada evaluada como el modelo total de N a la siembra de N40 versus N100 o N220 no fue significativa. Si se lo compara con el tratamiento de fertilización nitrogenada de N100 a la siembra, la estrategia de refertilización en Z32 generó un impacto levemente positivo sobre el rendimiento, pero al mismo tiempo no relacionado a la dosis de fertilización nitrogenada, ya que la respuesta se saturó en el tratamiento de N100+30, con una respuesta única de 16 kg grano / kg N aplicado. No obstante, el máximo rendimiento alcanzado en términos de valor promedio fue el de N40, no justificando en este ambiente la fertilización nitrogenada. La fertilización azufrada, por su parte, generó un impacto negativo sobre el rendimiento de 267 kg/ha, con efectos variables según la dosis de nitrógeno.

Figura 9. Rendimiento de trigo para diferentes tratamientos de fertilización nitrogenada en La Josefina, Pellegrini, campaña 2024-2025. Se muestra el resultado de todos aquellos tratamientos que no tuvieron fertilización azufrada durante el ciclo del cultivo.

Figura 10. Rendimiento de trigo para diferentes tratamientos de fertilización nitrogenada sin (azul) y con (naranja) azufre en La Josefina, Pellegrini, campaña 2024-2025.



El Chispazo, América, CREA América

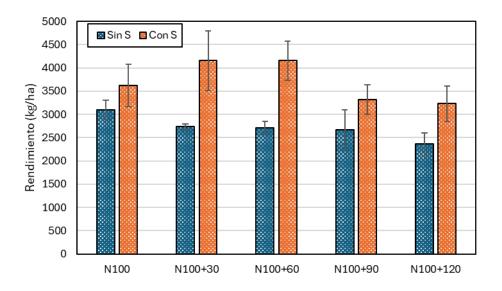
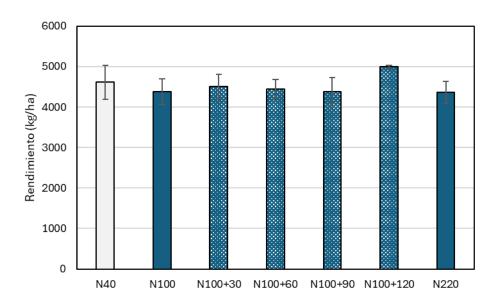

En El Chispazo, América, el ensayo se llevó a cabo utilizando el cultivar DM Catalpa, con las condiciones del sitio y manejo tal cual se describió en la Tabla 1 (ver arriba). El rendimiento del cultivo sin fertilizar (N40) fue de 2944 kg/ha, y la respuesta del rendimiento a la fertilización nitrogenada evaluada como el modelo total de N a la siembra de N40 versus N100 o N220 no fue significativa. Si se lo compara con el tratamiento de fertilización nitrogenada de N100 a la siembra, la estrategia de refertilización en Z32 generó un impacto levemente negativo sobre el rendimiento, no relacionado a la dosis de fertilización nitrogenada, perdiendo unos 477 kg/ha por refertilizar en Z32. La fertilización azufrada, por su parte, generó un impacto positivo sobre el rendimiento de 980 kg/ha, con efectos variables, pero consistentes, según la dosis de nitrógeno.

Figura 11. Rendimiento de trigo para diferentes tratamientos de fertilización nitrogenada en El Chispazo, América, campaña 2024-2025. Se muestra el resultado de todos aquellos tratamientos que no tuvieron fertilización azufrada durante el ciclo del cultivo.

Figura 12. Rendimiento de trigo para diferentes tratamientos de fertilización nitrogenada sin (azul) y con (naranja) azufre en El Chispazo, América, campaña 2024-2025.



La Laura, Capitán Castro, CREA Trenque Lauquen II

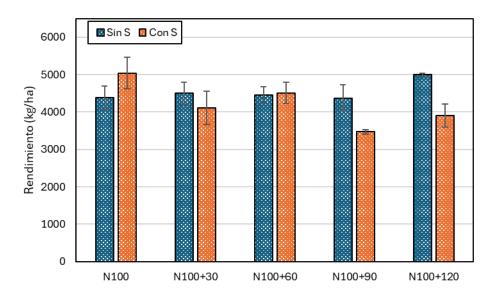

En La Laura, Capitán Castro, el ensayo se llevó a cabo utilizando el cultivar DM Catalpa, con las condiciones del sitio y manejo tal cual se describió en la Tabla 1 (ver arriba). El rendimiento del cultivo sin fertilizar (N40) fue de 4610 kg/ha, y la respuesta del rendimiento a la fertilización nitrogenada evaluada como el modelo total de N a la siembra de N40 versus N100 o N220 no fue significativa. Si se lo compara con el tratamiento de fertilización nitrogenada de N100 a la siembra, la estrategia de refertilización en Z32 generó únicamente un impacto positivo sobre el rendimiento cuando se aumentó la dosis a N100+120 (5002 versus 4377 kg/ha), pero que en todas las otras dosis de refertilización no generó diferencias versus a la dosis inicial de N100 sin refertilización. La fertilización azufrada, por su parte, generó un impacto promedio negativo sobre el rendimiento de 331 kg/ha, con efectos variables, según la dosis de nitrógeno (efectos positivos en bajas dosis de nitrógeno y positivos en altas dosis de nitrógeno aplicadas).

Figura 13. Rendimiento de trigo para diferentes tratamientos de fertilización nitrogenada en La Laura, Capitán Castro, campaña 2024-2025. Se muestra el resultado de todos aquellos tratamientos que no tuvieron fertilización azufrada durante el ciclo del cultivo.

Figura 14. Rendimiento de trigo para diferentes tratamientos de fertilización nitrogenada sin (azul) y con (naranja) azufre en La Laura, Capitán Castro, campaña 2024-2025.

