

REGIÓN SUR DE SANTA FE

Informe PRELIMINAR de la Red de Híbridos de Maíz en siembra temprana 2023-2024 CREA-SSF

Román Domínguez (Coordinación regional)
Agustina Donovan (Coordinación de ensayos)
Guillermo Marccasini (Responsable de sitios)
Ignacio Gómez (Responsable de sitios)
Ignacio Juárez (Responsable de sitios)
Matías Curti (Responsable de sitios)
Santiago Alvarez Prado (Análisis de datos, elaboración de informe)
Guido Di Mauro (Análisis de datos, elaboración de informe)
Miembros y asesores CREA Sur de Santa Fe

Descripción de la Red:

Durante la campaña 2023-2024 se llevaron a cabo ensayos en 12 sitios (Tabla 1). En la Tabla 1 se describen los experimentos en cada sitio.

Tabla 1: Descripción de los ensayos de la red. Se indica el nombre del establecimiento, CREA, localidad, sub-región, coordenadas y fecha de siembra.

Establecimiento	CREA	Localidad	Sub-región	Latitud	Longitud	Fecha de siembra
La Baya	Maria Teresa	Maria Teresa	S 3	-33.99	-62.03	21-sep
Campo Garcia	General Arenales	General Arenales	S3	-34.27	-61.34	26-sep
El Pelado	Teodelina	Teodelina	S3	-34.11	-61.38	5-oct
Los Nogales	Colonia Medici	Tortugas	S1	-32.79	-61.73	15-sep
Santa Catalina	La Calandria	Los Cardos	S1	-32.29	-61.70	18-oct
Don Roque	Armstrong - M. Oca	Colonia Medici	S1	-32.59	-61.43	18-sep
La Cora	Colonia Medici	Villa Mugueta	S1	-33.35	-61.10	25-sep
Ar Agropecuaria	Las Petacas	Clusellas	S1	-31.36	-61.71	5-nov
Hayduk	General Baldissera	Corral De Bustos	S2	-33.25	-62.11	26-sep
Campo Varoli	Monte Buey - Inriville	Monte Buey	S2	-32.87	-62.46	14-sep
EL Olvido	Monte Buey - Inriville	Viamonte	S2	-33.77	-62.96	11-oct
La Dorita	Monte Maíz	Alejo Ledesma	S2	-33.51	-62.62	21-oct

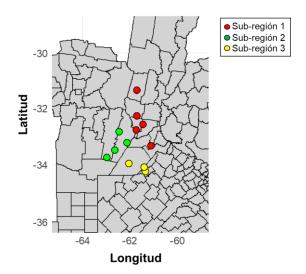


Figura 1: Ubicación de los sitios donde se realizaron los ensayos de la campaña 23-24.

Híbridos evaluados:

Se evaluaron un total de 19 híbridos de diferentes empresas (Tabla 2). Todos los híbridos estuvieron presentes en todos los sitios (ver tablas de rendimiento).

Tabla 2. Lista de híbridos que participaron de la red indicando semillero en cada caso.

15					
Híbrido	Empresa				
ADV 8122 VT3P	ADVANTA		□-BASF	10.0	
BASF 7349 VT3PRO	BASF	ADVANTA	We create chemistry	NIDERA SEMILLAS	
DK 69-62 TRE	DEKALB			SEMILLAS	*SPS
DK 74-47 TRE	DEKALB				
LT 3-44 TRE	LA TIJERETA		LA		
LT 725 TRE	LA TIJERETA	DEVALE	TIJERET		
BRV 8380 PWUE	BREVANT		Decisiones rental	bles	
DM 2773 TRE	DON MARIO	DEKALB RINDE			R
IS 799 TRE	ILLINOIS				R
LG 30849 VIP3	LIMAGRAIN	• //			
NS 7921 VIP3 CL	NIDERA		DOMAAD	10	136
NK 835 VIP3	NK	BREVANT semillas	DONMAR		
NK 870 VIP3	NK	semilias	SEMILLA	R	
ACRUX PWUE	NORD				
ARON PWU	NORD				SEMILLAS
P 2021 PWUE	PIONEER		NIGS		nord
SPS 2615 VIP3	SPS	ILLINOIS		STINE	- 110101
SPS 2743 VIP3	SPS	ILLINO13		JI IIAE	
ST 9939-20	STINE SEED				

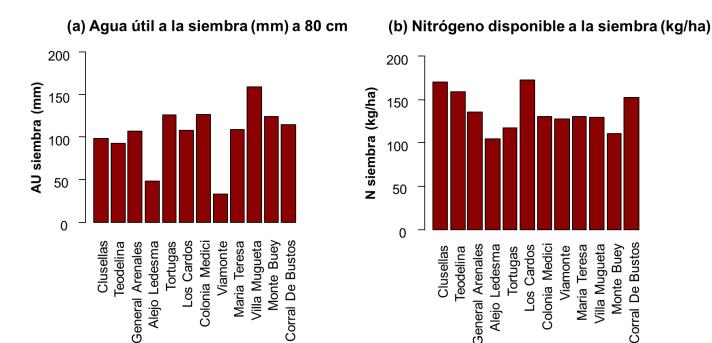
Condiciones iniciales y manejo:

Aquí se presenta un análisis preliminar de las condiciones iniciales, de manejo y climáticas de la campaña. Todos los experimentos se realizaron en condiciones de secano y con la tecnología disponible del productor. La información de manejo, suelo y agua se presentan, en forma parcial, en la Tabla 2. En líneas generales, los maíces tempranos partieron con entre 33 y 159 mm a la siembra (Tabla 3, Fig. 2). Todos los sitios evaluados presentaron elevados valores de nitrógeno disponible a la siembra variando entre 105 y 173 kg N ha-1 (Tabla 3; Fig. 2).

Tabla 3. Fecha de siembra, densidad, distancia entre hileras, información del suelo, nutrientes y agua en las distintas localidades evaluadas.

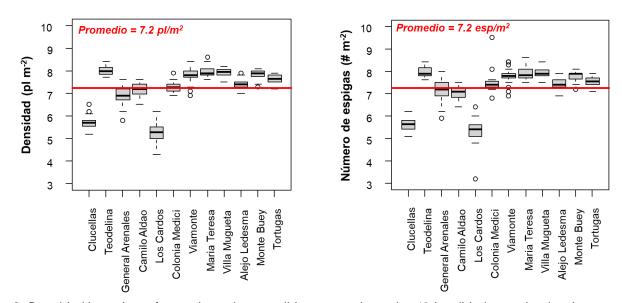
CREA	Campo	Localidad	FS	Dens (pl/m2)	DES	MO %	рН	Ns (kg/ha)	Na (kg/ha)	Ps (ppm)	Pa (kg/ha)	Ss (ppm)	Zn (ppm)	Napa	AU (mm)	Lluvias (mm)	Antecesor
Maria Teresa	La Baya	Maria Teresa	21-sep	7.9	0.52	2.65	6	130	115	38	sd	13	0.98	No	109	617	Soja 1
General Arenales	Campo Garcia	General Arenales	26-sep	7.2	0.42	2.64	6	135	sd	18.7	sd	13	0.97	No	107	662	Soja 1
Teodelina	El Pelado	Teodelina	5-oct	8.0	0.52	2.39	6	159	138	32.9	sd	15	0.97	No	93	713	Soja 1
Colonia Medici	Los Nogales	Tortugas	15-sep	7.9	0.52	2.49	6	117	sd	14.3	sd	10	1.02	No	126	592	Soja 1
La Calandria	Santa Catalina	Los Cardos	18-oct	6.7	0.52	3.05	6	173	203	30.5	sd	16	0.94	No	108	862	Soja 1
Armstrong - M. Oca	Don Roque	Colonia Medici	18-sep	7.4	0.52	2.44	6	130	sd	32.3	sd	14	0.89	No	127	811	Trigo/Soja1
Colonia Medici	La Cora	Villa Mugueta	25-sep	7.9	0.52	2.87	6	129	129	40.9	sd	13	0.94	No	159	854	Trigo/Soja1
Las Petacas	Ar Agropecuaria	Clusellas	5-nov	7.3	0.52	2.48	6	170	sd	37.3	sd	12	0.92	Si	99	781	Soja 1
General Baldissera	Hayduk	Camilo Aldao	26-sep	6.2	0.52	2.59	6	152	sd	24.1	sd	15	0.94	No	115	573	Soja 1
Monte Buey - Inriville	Campo Varoli	Monte Buey	14-sep	8.1	0.52	2.2	6	111	sd	23.5	sd	12	0.97	sd	124	691	sd
Monte Buey - Inriville	EL Olvido	Viamonte	11-oct	7.8	0.52	1.75	6	128	117	15.1	31	9.2	0.91	No	33	708	Soja 1
Monte Maíz	La Dorita	Alejo Ledesma	21-oct	7.4	0.52	1.58	6	105	80	16.2	sd	10	0.83	No	48	862	Soja 1

Ns : N del suelo Ps : P del suelo Ss: S del suelo


Napa: presencia o ausencia

AU: Agua útil a la siembra se indica en mm Lluvias de abril a diciembre inclusive.

luvias de abril a diciembre inclusive


Fung: Aplicación de funguicida.

sd: sin dato.

Figura 2: (a) Agua útil (0-80 cm) y (b) nitrógeno disponible a la siembra (0-60 cm) en los sitios evaluados de la red. Las localidades están ordenadas de menor a mayor rendimiento promedio.

Respecto a la densidad lograda, la misma varió entre localidades con entre 5.3 y 8.0 pl m⁻² para, Los Cardos y Teodelina, respectivamente (Fig. 3). El número de espigas por m² sigue un patrón similar al de la densidad lograda (Fig. 3). En la Tabla S1 se muestra la prolificidad medida como el cociente entre el número de espigas por m² y el número de plantas por m². Los valores de prolificidad se mantuvieron cercanos a 1 variando entre 0.71 y 1.28 para Los Cardos y entre 0.96 y 1 para Monte Buey.

Figura 3: Densidad lograda y número de espigas medidas a cosecha en las 12 localidades evaluadas. Las localidades están ordenadas de menor a mayor rendimiento.

Diseño y análisis:

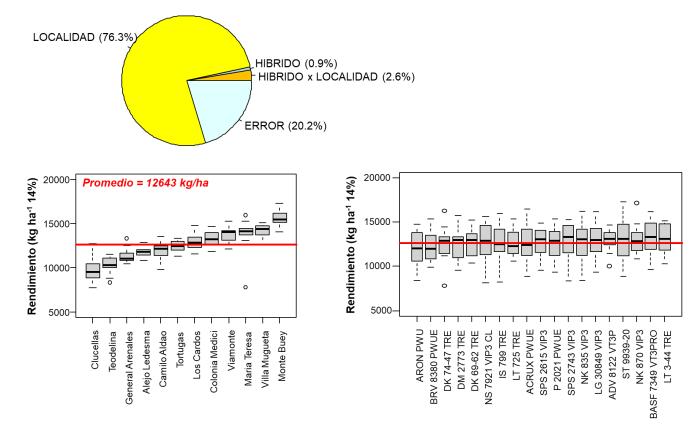
En todos los experimentos se utilizó un diseño con testigos apareados (Fig. 4), uno para cada largo de ciclo, el cual se repitió entre tres y cuatro veces en cada ensayo. Las parcelas fueron franjas de un mínimo de 7 surcos (dependiendo del ancho de la maquinaria del productor) y con un mínimo de 200 m de largo.

Los ensayos se sembraron y cosecharon con la tecnología disponible por el productor. El análisis se realizó mediante un análisis de la variancia considerando la variabilidad del testigo en cada localidad. A partir de este análisis de estimaron medias ajustadas para cada híbrido. El análisis contó con los siguientes pasos:

- 1. Análisis de la variancia para cada localidad en forma individual.
- 2. Estimación del CV a partir del análisis de la variancia.
- 3. Se descartaron aquellas localidades cuyo CV fue mayor al 15%.
- 4. Se realizó el análisis de la variancia en forma individual y conjunta para aquellos sitios con CV menor o igual al 15%.

	Entrada
1	1
ADV 8122 VT3P	2
LT 725 TRE	3
ARON PWU	4
BASF 7349 VT3PRO	5
2	6
SPS 2743 VIP3	7
DK 69-62 TRE	8
NK 870 VIP3	9
LT 3-44 TRE	10
3	11
BRV 8380 PWUE	12
DM 2773 TRE	13
ACRUX PWUE	14
LG 30849 VIP3	15
4	16
NS 7921 VIP3 CL	17
DK 74-47 TRE	18
EXP 5225 VIP3	19
P 2021 PWUE	20
5	21
IS 799 TRE	22
SPS 2615 VIP3	23
ST 9939-20	24
XXX	25
6	26
	ADV 8122 VT3P LT 725 TRE ARON PWU BASF 7349 VT3PRO 2 SPS 2743 VIP3 DK 69-62 TRE NK 870 VIP3 LT 3-44 TRE 3 BRV 8380 PWUE DM 2773 TRE ACRUX PWUE LG 30849 VIP3 4 NS 7921 VIP3 CL DK 74-47 TRE EXP 5225 VIP3 P 2021 PWUE 5 IS 799 TRE SPS 2615 VIP3 ST 9939-20 XXX

Figura 4: Esquema del orden de siembra para los híbridos de maíz. En cada localidad se utiliza un testigo específico (elegido por el productor), el cuales se repite 6 veces.


Antes de la cosecha se realizaron una serie de mediciones en cada experimento. En cada franje se realizaron 3 mediciones de número de plantas logradas, número de espigas logradas, número de plantas quebradas, número de plantas volcadas, incidencia de roya y tizón. Se estimó la prolificidad como el cociente entre el número de espigas por m² y el número de plantas por m².

Clima campaña:

Esta información se incluirá en el informe final.

Resultados:

Los resultados del ECR de la campaña 2023-24 muestran grandes variaciones en el rendimiento, las cuales variaron entre 7700 a 18800 kg ha⁻¹ (Fig. 5). Esta variación estuvo principalmente explicada por la Localidad, la cual explicó un 76% de las variaciones en rendimiento (Fig. 5) siendo Monte Buey la localidad que presentó los mayores rendimientos, con 15600 kg ha⁻¹ en promedio, y Clucellas la que presentó los menor rendimientos, con 9600 kg ha⁻¹ en promedio. Por otro lado, en el análisis conjunto, el híbrido explicó menos de un 1% de las variaciones en el rendimiento (Fig. 5). En la tabla 5 se detalla el ranking general de rendimiento, además del rendimiento de estos híbridos para cada localidad.

Figura 5: El gráfico de torta muestra la partición de la variación del rendimiento en Híbrido, Localidad y su interacción, expresada en porcentaje. El boxplot de la izquierda muestra la variabilidad de los rendimientos obtenidos en la red de experimentos ordenados de menor a mayor por localidad. La línea roja indica la media de rendimiento de la campaña de 12733 kg ha⁻¹. El boxplot de la derecha muestra la variabilidad del rendimiento de cada híbrido evaluado en la red de experimentos. La línea roja indica la media de rendimiento.

La tabla 5 muestra los rankings de rendimiento para el conjunto de todas las loaclidades y para cada localidad por separado. Los rendimientos están ordenandos de mayor a menor de acuerdo al rendimiento del análisis conjunto. Vale destacar que todas las localidades con datos (aún falta cosechar Alejo Ledesma) presentaron coeficientes de variación (CV) menores al 15%. Es por eso que ninguna localidad fue eliminadad el análisis conjunto. De acuerdo a este análisis preliminar, los híbridos LT 3-44 TRE, BASF 7349 VT3PRO, NK 870 VIP3, ST 9939-20, ADV 8122 VT3P, LG 30849 VIP3, NK 835 VIP3, SPS 2743 VIP3, P 2021 PWUE, SPS 2615 VIP3, ACRUX PWUE y LT 725 TRE se destacaron por sobre el resto de los híbrido (Tabla 5).

En la tabla 6 se muestra el ranking de híbridos para cada subregión individual. En líneas generales la sub-región 2 fue la que presentó el mayor rendimiento promedio, con 13894 kg ha⁻¹, seguido de la sub-región 1 con 12664 kg ha⁻¹ y la sub-región 3 con 11956 kg ha⁻¹ (Tabla 6).

Respecto a la humedad de cosecha, las localidades se cosecharon con entre 13.8 y 20.7% (Fig. 6) siendo la localidad de Clucellas la que se cosechó con mayor porcentaje de humedad (Fig. 6). Tomando esta localidad como referencia, se realizó una comparación entre los híbridos respecto a su humedad a cosecha (Fig. 6). De esta comparación se destacan los híbridos SPS2615VIP3 y NS7921VIP3CL con un 17.9 y 18.7% de humedad mientras que el híbrido LT725TRE fue el que presentó mayor porcentaje de humedad a cosecha con 23.9% (Fig.6).

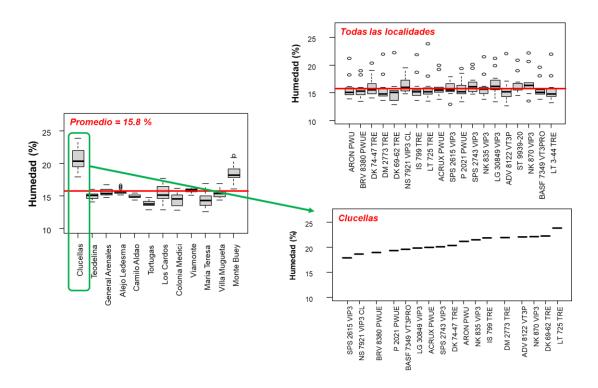
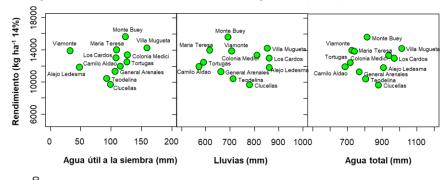


Figura 6: El boxplot de la izquierda muestra la variabilidad de la humedad a cosecha obtenida en la red de experimentos ordenados de menor a mayor rendimiento por localidad. La línea roja indica la media de rendimiento de la campaña de 15.8 %. El recuadro verde resalta la localidad de Clucellas por su elevada humedad a cosecha. El boxplot de la derecha arriba muestra la variabilidad de la humedad a cosecha de cada híbrido evaluado en la red de experimentos. La línea roja indica la media de rendimiento. El boxplot de la derecha abajo muestra la humedad a cosecha de cada híbrido evaluado en Clucellas. En este gráfico, los híbridos están ordenados de menor a mayor humedad de cosecha.


Tabla 5. Rendimiento (kg/ha, 14% de humedad) de los híbridos evaluados, ordenados de mayor a menor rendimiento de acuerdo al promedio conjunto (primera columna). En verde se indican los híbridos de mayor rendimiento sin diferencias significativas de acuerdo a la diferencia mínima significativa (DMS) (p<0,05). En naranja se indican el resto de los híbridos. Al final de la tabla se indica el promedio del sitio, el CV (%), la DMS, y la diferencia entre el rendimiento máximo y el mínimo para cada sitio.

	Conjunto ¯	Sub-región 1						Sub	-región 2	Sub-región 3			
Híbrido		Los Cardos	Colonia Medici	Tortugas	Villa Mugueta	Clucellas	Alejo Ledesma	Monte Buey	Viamonte	Camilo Aldao	General Arenales	Maria Teresa	Teodelina
LT 3-44 TRE	13193	14656	14275	12528	13798	11207	11446	15156	15174	12249	12505	14986	10332
BASF 7349 VT3PRO	13177	13626	14693	13054	15115	10799	11897	16189	13828	12175	11885	15230	9636
NK 870 VIP3	13048	12419	12995	13118	14425	12755	10837	17157	13182	11347	12291	14813	11231
ST 9939-20	13020	14032	14466	11834	14995	8896	10860	17315	15283	12233	11437	14415	10478
ADV 8122 VT3P	12936	12868	12897	13304	13701	10009	12276	14663	14196	12635	13322	13894	11464
LG 30849 VIP3	12847	14792	13251	12542	13831	9586	12451	16186	13104	12451	10821	15311	9391
NK 835 VIP3	12804	13244	14319	12944	14977	8427	11460	16260	14045	12866	11054	13903	10144
SPS 2743 VIP3	12791	13744	14003	12970	14672	10054	10054	15303	15007	11227	11738	14533	8372
P 2021 PWUE	12707	13354	13683	12324	13879	9380	11768	15335	15156	12531	10719	14045	10306
SPS 2615 VIP3	12681	13910	14265	11508	14873	9569	11925	14076	13057	12299	11593	13779	10219
ACRUX PWUE	12680	12845	13782	12067	14482	8860	11607	16527	14179	12118	10526	14232	10932
LT 725 TRE	12664	12229	13611	12483	13992	10556	11334	15346	14213	11334	11829	13731	11546
IS 799 TRE	12626	12547	13043	11847	12654	8206	12058	15689	14213	11640	10834	15209	10984
NS 7921 VIP3 CL	12603	13468	14204	11542	14678	8137	11084	15632	15265	12430	11477	14499	8825
DK 69-62 TRE	12558	12988	13719	13024	13685	10338	11506	15202	15084	11202	10802	13620	11284
DM 2773 TRE	12488	12793	13255	13243	13361	9541	11594	15736	13151	12277	10414	14466	10025
DK 74-47 TRE	12477	13452	13018	13084	14482	11168	12890	16295	13166	11494	11430	7785	11464
BRV 8380 PWUE	12234	12971	13706	11902	13426	9917	11258	15383	12110	11747	10488	13667	10231
ARON PWU	11975	11999	12822	11312	13685	8395	12072	14755	13993	10104	11067	13909	9581
										_			
Promedio	12711	13260	13685	12454	14143	9779	11599	15695	14074	11914	11381	14001	10339
CV	5.4	2.7	1.9	0.7	2.1	12.3	1.8	4.7	5.4	11.8	3.6	4.8	4.4
DMS	567	1197	911	334	242	ns	818	1969	3173	ns	2603	6748	670
Dif Max-Min	1218	2793	1871	1992	2461	4618	2836	3239	3173	2762	2908	7526	3174

Tabla 6. Rendimiento (kg/ha, 14% de humedad) de los híbridos evaluados por sub-región CREA, ordenados de mayor a menor rendimiento de acuerdo a la sub-región 1. En verde se indican los híbridos de mayor rendimiento sin diferencias significativas de acuerdo a la diferencia mínima significativa (DMS) (p<0,05). En naranja se indican el resto de los híbridos. Al final de la tabla se indica el promedio del sitio, el CV (%), la DMS, y la diferencia entre el rendimiento máximo y el mínimo para cada sitio.

HIBRIDO	Sub-región 1	Sub-región 2	Sub-región 3
BASF 7349 VT3PRO	13457	13522	12250
LT 3-44 TRE	13293	13506	12608
NK 870 VIP3	13142	13131	12778
SPS 2743 VIP3	13089	13350	11548
DK 74-47 TRE	13041	13461	10226
ST 9939-20	12845	13923	12110
SPS 2615 VIP3	12825	12839	12343
LG 30849 VIP3	12800	13659	11841
NK 835 VIP3	12782	13658	11700
DK 69-62 TRE	12751	13249	11627
LT 725 TRE	12574	12998	12369
ADV 8122 VT3P	12556	13443	12893
P 2021 PWUE	12524	13698	11690
DM 2773 TRE	12439	13190	11635
ACRUX PWUE	12407	13608	11897
NS 7921 VIP3 CL	12406	13603	11600
BRV 8380 PWUE	12384	12625	11462
IS 799 TRE	11659	13400	13059
ARON PWU	11643	12731	11519
Promedio	12664	13347	11956
CV	5	6	5
DMS	883	1073	949
Dif Max-Min	1815	1298	2832

Las diferencias en rendimiento entre localidades no estuvieron asociadas a la disponibilidad de agua, tanto a la siembra, como el agua de precipitaciones ni al agua total disponible (Fig. 7). Por

Wonte Buey

Villa Mugueta

Villa Mug

otro lado, se observó una tendencia negativa entre el rendimiento y el nitrógeno inicial a la siembra (Fig. 7). En el informe final se incluirán los datos de nitrógeno fertilizado, lo que probablemente explique parte de las diferencias observadas.

Figura 7. Relación entre el rendimiento y (panel de arriba) el agua a la siembra (mm), el agua de precipitaciones (mm) y el agua total (sumatoria de agua la siembra y precipitaciones), y (panel de abajo) nitrógeno inicial a la siembra (kg N/ha).

Comportamiento agronómico

Se evaluó el porcentaje de plantas volcadas y quebradas en todas las localidades ensayadas. Respecto al vuelco, se observó una variación general entre 0 y 70%, con un promedio general de 2.2% (Fig. 8). Los máximos valores se observaron de vuelco se observaron en la localidad de Tortugas, a cuál presentó, en promedio, un porcentaje de plantas volcadas de 18% (Fig. 8a), sin observarse diferencias sustanciales entre los híbridos evaluados cuando se analizaron todas las localidades en conjunto (Fig. 8b). Al analizar sólo la localidad de Tortugas, la cual presenté los mayores porcentajes de vuelco se pueden destacar los híbridos NS7921VIP3CL, ACRUX PWUE, LT725TRE y DK74-47TRE como los híbridos con mayor porcentaje de vuelco en esa localidad (50% o más).

En cuanto al porcentaje de plantas quebradas, este varió entre 0 y 40%, con un promedio general de 1.3% (Fig. 9). Las localidades que presentaron porcentajes de plantas quebradas por encima de la media fueron Tortugas con un 5.3% (entre 0 y 40%), General Arenales con un 3.2% (entre 0 y 14%) y Camilo Aldao con un 2.7% de plantas quebradas (entre 0 y 10%) (Fig. 9a). Al igual que con el porcentaje de plantas volcadas, los híbridos mostraron comportamientos similares respecto al porcentaje de plantas quebradas (Fig. 9b). En la localidad de Tortugas se destacaron los híbridos NS7921VIP3CL, LT725TRE y NK 835VIP3 como los que presentaron mayor porcentaje de quebrado (Fig 9c). El híbrido DM2773TRE fue el que presentó el mayor porcentaje de quebrado en la localidad de Monte Buey (Fig. 9a).

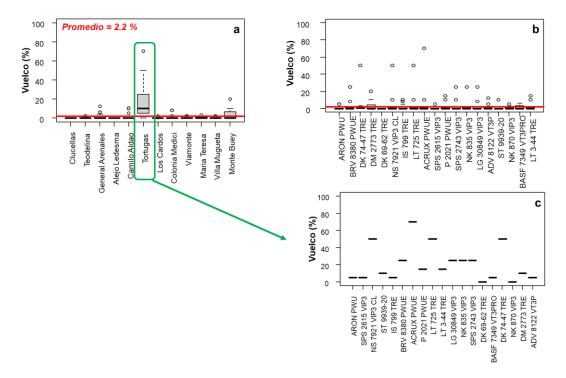


Figura 8: (a) El boxplot de la izquierda muestra la variabilidad de los porcentajes de vuelco obtenidos en las distintas localidades de la red de experimentos ordenados de menor a mayor rendimiento. La línea roja indica la media de vuelco de la campaña de 2.2 %. El rectángulo verde indica la localidad que presentó el mayor porcentaje de vuelco. (b) El boxplot de la derecha arriba muestra la variabilidad del porcentaje de vuelco de cada híbrido evaluado en la red de experimentos. La línea roja indica la media de vuelco. (c)El gráfico de abajo a la derecha muestra los porcentajes de vuelco para cada híbrido en la localidad Tortugas.

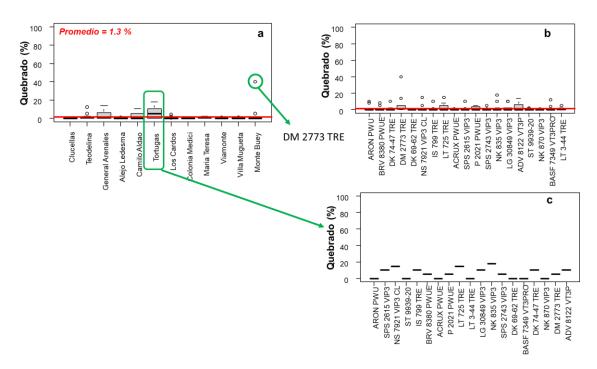


Figura 9: (a) El boxplot de la izquierda muestra la variabilidad de los porcentajes de plantas quebradas obtenidos en las distintas localidades de la red de experimentos ordenados de menor a mayor rendimiento. La línea roja indica la media de porcentaje de plantas quebradas de la campaña de 1.3 %. El rectángulo y el círculo verde marcan la localidad y el híbrido con mayor porcentaje de quebrado. (b) El boxplot de la derecha muestra la variabilidad del porcentaje de plantas quebradas de cada híbrido evaluado en la red de experimentos. La línea roja indica la media del porcentaje de plantas quebradas. (c) El boxplot de abajo a la derecha muestra los porcentajes de quebrado para los híbridos en la localidad de Tortugas.

Comportamiento Sanitario

Se incluirá en el informe final

Tabla S1. Prolificidad de los híbridos evaluados. La prolificidad se estimó como el cociente entre le número de espigas por m² y el número de plantas por m². Al final de la tabla se indica la densidad a cosecha, el máximo y el mínimo de prolificidad para cada localidad.

	Sub-región 1						Sub-r	egión 2	Sub-región 3			
HIBRIDO	Los Cardos	Colonia Medici	Tortugas	Villa Mugueta	Clucellas	Alejo Ledesma	Monte Buey	Viamonte	Camilo Aldao	General Arenales	Maria Teresa	Teodelina
ADV 8122 VT3P	1.28	1.00	1.00	1.00	0.97	1.00	0.99	1.00	0.97	0.99	1.00	1.00
LT 725 TRE	0.71	0.99	0.97	1.00	0.96	0.99	0.99	0.99	0.99	0.99	1.00	1.00
ARON PWU	0.96	1.01	0.99	1.00	0.96	1.00	0.99	1.00	0.99	0.99	0.99	1.00
BASF 7349 VT3PRO	1.02	1.00	0.97	1.00	0.98	1.00	0.98	1.00	0.97	1.01	1.00	1.00
SPS 2743 VIP3	1.02	0.96	0.99	1.00	1.00	1.04	0.99	1.00	0.99	0.96	1.00	0.99
DK 69-62 TRE	1.02	1.00	0.99	1.00	0.98	1.00	1.00	1.00	0.99	1.01	1.00	1.00
NK 870 VIP3	1.02	0.97	0.99	1.00	0.98	0.99	0.97	1.00	0.98	1.00	1.00	0.99
LT 3-44 TRE	1.04	1.03	0.99	1.00	0.95	1.00	0.99	1.00	0.99	1.01	1.00	0.99
BRV 8380 PWUE	0.98	1.03	0.99	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.99	1.00
DM 2773 TRE	1.02	1.04	0.99	1.00	0.98	1.00	0.99	1.00	0.99	1.02	0.99	1.00
ACRUX PWUE	1.02	1.06	0.99	1.00	1.00	1.00	1.00	1.00	0.97	1.01	0.99	1.00
LG 30849 VIP3	1.02	1.03	0.97	0.99	0.96	1.03	1.00	0.99	0.99	1.00	0.98	0.99
NS 7921 VIP3 CL	0.98	1.00	0.99	1.00	1.00	0.99	1.00	1.00	1.00	0.99	0.98	1.00
DK 74-47 TRE	1.00	1.00	0.99	1.00	0.97	1.00	1.00	1.00	0.99	1.02	0.96	1.00
NK 835 VIP3	1.06	1.00	0.97	1.00	0.98	1.00	1.00	1.00	0.99	1.00	0.96	0.99
P 2021 PWUE	0.96	1.14	1.00	1.00	0.96	1.00	1.00	1.00	0.99	1.03	0.99	1.00
IS 799 TRE	1.03	1.07	0.97	1.00	0.97	1.00	0.99	0.99	0.99	1.06	0.97	1.00
SPS 2615 VIP3	0.98	0.99	1.00	0.99	0.97	1.00	0.99	0.99	0.97	1.00	0.97	0.99
ST 9939-20	1.04	1.28	0.95	1.04	1.00	1.04	0.96	1.08	0.97	1.14	1.00	1.02
Densidad	6.7	7.4	7.9	7.9	7.3	7.4	8.1	7.8	6.2	7.2	7.9	8
Max prolificidad	1.28	1.28	1.00	1.04	1.00	1.04	1.00	1.08	1.00	1.14	1.00	1.02
Min prolificidad	0.71	0.96	0.95	0.99	0.95	0.99	0.96	0.97	0.97	0.96	0.96	0.99

Referencias

Bates, D., Maechler, M., Bolker, B., Walker, S. 2013. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-5. http://CRAN.R-project.org/package=lme4.

R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.